Background: Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection.
Methods: BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP).
Am J Physiol Renal Physiol
November 2024
Acute kidney injury (AKI) and chronic kidney disease (CKD) are increasingly recognized as interconnected conditions with overlapping pathophysiological mechanisms. This review examines the transition from AKI to CKD, focusing on the molecular mechanisms, animal models, and biomarkers essential for understanding and managing this progression. AKI often progresses to CKD due to maladaptive repair processes, persistent inflammation, and fibrosis, with both conditions sharing common pathways involving cell death, inflammation, and extracellular matrix (ECM) deposition.
View Article and Find Full Text PDFA mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs.
View Article and Find Full Text PDFSelf-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-β-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel.
View Article and Find Full Text PDFRecent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate.
View Article and Find Full Text PDFBackground And Purpose: This study investigated the reno-protective effects of a highly selective ATR agonist peptide, β-ProAng III in a mouse model of acute kidney injury (AKI).
Methods: C57BL/6 J mice underwent either sham surgery or unilateral kidney ischemia-reperfusion injury (IRI) for 40 min. IRI mice were treated with either β-ProAng III or perindopril and at 7 days post-surgery the kidneys analysed for histopathology and the development of fibrosis and matrix metalloproteinase (MMP)-2 and -9 activity.
Determining the porosity of hydrogels is an important component of material characterisation. While scanning electron microscopy (SEM) is a widely used method to study hydrogel nanoarchitecture, it is well-established that SEM sample preparation methods can alter the structure of hydrogels. Herein we describe the impact of sample preparation on the SEM analysis of self-assembling β-peptide hydrogels.
View Article and Find Full Text PDFFibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI).
View Article and Find Full Text PDFChronic kidney disease (CKD) affects 1 in 10 members of the general population, placing these patients at an increasingly high risk of kidney failure. Despite the significant burden of CKD on various healthcare systems, there are no effective cures that reverse or even halt its progression. In recent years, human bone-marrow-derived mesenchymal stromal cells (BM-MSCs) have been recognised as a novel therapy for CKDs, owing to their well-established immunomodulatory and tissue-reparative properties in preclinical settings, and their promising safety profile that has been demonstrated in patients with CKDs from several clinical trials.
View Article and Find Full Text PDFCirculating bone marrow-derived endothelial progenitor cells (EPCs) facilitate vascular repair in several organs including the kidney but are progressively diminished in end-stage kidney disease (ESKD) patients, which correlates with cardiovascular outcomes and related mortality. We thus determined if enhancing the tissue-reparative effects of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) with the vasculogenic effects of recombinant human relaxin (RLX) could promote EPC proliferation and function. CD34 EPCs were isolated from the blood of healthy and ESKD patients, cultured until late EPCs had formed, then stimulated with BM-MSC-derived condition media (CM; 25%), RLX (1 or 10 ng/mL), or both treatments combined.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) hold enormous potential in the field of regenerative medicine due to their pluripotent properties, where they can give rise to all cell types in the body. Here we describe a detailed 20-day culture and differentiation protocol to generate iPSC-derived podocytes grown as a monolayer. These iPSC-derived podocytes appear arborised by morphology and express podocyte-specific markers.
View Article and Find Full Text PDFBackground And Purpose: Fibrosis is a hallmark of chronic kidney disease (CKD) that significantly contributes to renal dysfunction, and impairs the efficacy of stem cell-based therapies. This study determined whether combining bone marrow-derived mesenchymal stem cells (BM-MSCs) with the renoprotective effects of recombinant human relaxin (serelaxin) could therapeutically reduce renal fibrosis in mice with one kidney/deoxycorticosterone acetate/salt (1K/DOCA/salt)-induced hypertension, compared with the effects of the ACE inhibitor, perindopril.
Experimental Approach: Adult male C57BL/6 mice were uni-nephrectomised and received deoxycorticosterone acetate and saline to drink (1K/DOCA/salt) for 21 days.
The in vivo engraftment of induced pluripotent stem cell (iPSC)-derived podocytes following allogeneic transplantation into host kidneys remains a challenge. Here we investigate the survival and engraftment of human dermal fibroblasts-derived differentiated iPSCs using a newborn mouse model, which represents a receptive immunoprivileged host environment. iPSCs were generated from skin biopsies of patients using Sendai virus reprogramming.
View Article and Find Full Text PDFObjectives: Primary cilia are sensory organelles which co-ordinate several developmental/repair pathways including hedgehog signalling. Studies of human renal allografts suffering acute tubular necrosis have shown that length of primary cilia borne by epithelial cells doubles throughout the nephron and collecting duct, and then normalises as renal function returns. Conversely the loss of primary cilia has been reported in chronic allograft rejection and linked to defective hedgehog signalling.
View Article and Find Full Text PDFThe cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles.
View Article and Find Full Text PDFTesting angiogenic potential and function of cells in culture is important for the understanding of the mechanisms that can modulate angiogenesis, especially when discovering novel anti- or pro-angiogenic therapeutics. Commonly used angiogenic assays include tube formation, proliferation, migration, and wound healing, and although well-characterized, it is important that methodology is standardized and reproducible. Human endothelial progenitor cells (EPCs) are critical for post-natal vascular homeostasis and can be isolated from human peripheral blood.
View Article and Find Full Text PDFTransforming growth factor-beta (TGF-β1) plays an important regulatory role in the progression of chronic kidney failure. Further, damage to kidney glomerular mesangial cells is central to the progression of diabetic nephropathy. The aim of this study was to explore the genetic associations between mRNA, microRNA, and epigenetics in mesangial cells in response to TGF-β1.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a major and growing public health concern with increasing incidence and prevalence worldwide. The therapeutic potential of stem cell therapy, including mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) holds great promise for treatment of CKD. However, there are significant bottlenecks in the clinical translation due to the reduced number of transplanted cells and the duration of their presence at the site of tissue damage.
View Article and Find Full Text PDFRenal podocyte survival depends upon the dynamic regulation of a complex cell architecture that links the glomerular basement membrane to integrins, ion channels, and receptors. Alport syndrome is a heritable chronic kidney disease where mutations in 3, 4, or 5 collagen genes promote podocyte death. In rodent models of renal failure, activation of the calcium-sensing receptor (CaSR) can protect podocytes from stress-related death.
View Article and Find Full Text PDFBackground: Exposure to high levels of oxygen (hyperoxia) after birth leads to lung injury. Our aims were to investigate the modulation of myeloid cell sub-populations and the reduction of fibrosis in the lungs following administration of human mesenchymal stem cells (hMSC) to neonatal mice exposed to hyperoxia.
Method: Newborn mice were exposed to 90% O (hyperoxia) or 21% O (normoxia) from postnatal days 0-4.
Nephrology (Carlton)
November 2018
Recent developments in targeted gene editing have paved the way for the wide adoption of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nucleases (Cas9) as an RNA-guided molecular tool to modify the genome of eukaryotic cells of animals. Theoretically, the translation of CRISPR-Cas9 can be applied to the treatment of inherited or acquired kidney disease, kidney transplantation and genetic corrections of somatic cells from kidneys with inherited mutations, such as polycystic kidney disease. Human pluripotent stem cells have been used to generate an unlimited source of kidney progenitor cells or, when spontaneously differentiated into three-dimensional kidney organoids, to model kidney organogenesis or the pathogenesis of disease.
View Article and Find Full Text PDF