Publications by authors named "Sharon Cawley"

In β-thalassemia, unequal production of α- and β-globin chains in erythroid precursors causes apoptosis and inhibition of late-stage erythroid differentiation, leading to anemia, ineffective erythropoiesis (IE), and dysregulated iron homeostasis. Here we used a murine model of β-thalassemia intermedia (Hbb(th1/th1) mice) to investigate effects of a modified activin receptor type IIB (ActRIIB) ligand trap (RAP-536) that inhibits Smad2/3 signaling. In Hbb(th1/th1) mice, treatment with RAP-536 reduced overactivation of Smad2/3 in splenic erythroid precursors.

View Article and Find Full Text PDF

Erythropoietin (EPO) stimulates proliferation of early-stage erythrocyte precursors and is widely used for the treatment of chronic anemia. However, several types of EPO-resistant anemia are characterized by defects in late-stage erythropoiesis, which is EPO independent. Here we investigated regulation of erythropoiesis using a ligand-trapping fusion protein (ACE-536) containing the extracellular domain of human activin receptor type IIB (ActRIIB) modified to reduce activin binding.

View Article and Find Full Text PDF

Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction.

View Article and Find Full Text PDF

In the heart, nitric oxide (NO) modulates contractile function; however, the mechanisms responsible for this effect are incompletely understood. NO can elicit effects via a variety of mechanisms including S-nitrosylation and stimulation of cGMP synthesis by soluble guanylate cyclase (sGC). sGC is a heterodimer comprised of a β(1)- and an α(1)- or α(2)-subunit.

View Article and Find Full Text PDF

Altered cGMP signaling has been implicated in myocardial depression, morbidity, and mortality associated with sepsis. Previous studies, using inhibitors of soluble guanylate cyclase (sGC), suggested that cGMP generated by sGC contributed to the cardiac dysfunction and mortality associated with sepsis. We used sGC(alpha)(1)-deficient (sGC(alpha)(1)(-/-)) mice to unequivocally determine the role of sGC(alpha)(1)beta(1) in the development of cardiac dysfunction and death associated with two models of inflammatory shock: endotoxin- and TNF-induced shock.

View Article and Find Full Text PDF

Cyclic-3',5'-guanosine monophosphate (cGMP) mediates the intracellular signaling cascade responsible for the nitric oxide (NO) initiated relaxation of vascular smooth muscle (VSM). However, the temporal dynamics, including the regulation of cGMP turnover, are largely unknown. Here we report new mechanistic insights into the kinetics of cGMP synthesis and hydrolysis in primary VSM cells by utilizing FRET-based cGMP-indicators [A.

View Article and Find Full Text PDF

The second messenger cyclic guanosine 5'-monophosphate (cGMP) plays a key role in the control and regulation of a steadily increasing number of diverse physiological processes. As the appreciation of the importance of understanding the cGMP signaling pathway has grown, so has the awareness of the limited techniques with which to study the rapid intracellular cGMP kinetics. We have previously demonstrated the construction of cygnets, cGMP indicators using energy transfer comprised of cyan and yellow variants of green fluorescent protein flanked by conformationally sensitive cGMP receptor portion taken from the cGMP-dependent protein kinase.

View Article and Find Full Text PDF