Publications by authors named "Sharon A Matthews"

Leukocyte function-associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) integrins are essential for lymphocyte adhesion, trafficking and effector functions. Protein kinase D (PKD) has previously been implicated in lymphocyte integrin regulation through regulation of Rap1 activity. However, the true role of PKD in integrin regulation in primary lymphocytes has not previously been investigated.

View Article and Find Full Text PDF

PKD (protein kinase D) 2 is a serine/threonine kinase activated by diacylglycerol in response to engagement of antigen receptors in lymphocytes. To explore PKD2 regulation and function in TCR (T-cell antigen receptor) signal transduction we expressed TCR complexes with fixed affinity for self antigens in the T-cells of PKD2-null mice or mice deficient in PKD2 catalytic activity. We also developed a single cell assay to quantify PKD2 activation as T-cells respond to developmental stimuli or engagement of α/β TCR complexes in vivo.

View Article and Find Full Text PDF

Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined.

View Article and Find Full Text PDF

Mammalian PKD (protein kinase D) isoforms have been implicated in the regulation of diverse biological processes in response to diacylglycerol and PKC (protein kinase C) signalling. To compare the functions of PKD1 and PKD2 in vivo, we generated mice deficient in either PKD1 or PKD2 enzymatic activity, via homozygous expression of PKD1(S744A/S748A) or PKD2(S707A/S711A) 'knockin' alleles. We also examined PKD2-deficient mice generated using 'gene-trap' technology.

View Article and Find Full Text PDF

The development of T lymphocytes in the thymus and the function of mature T cells in adaptive immune responses are choreographed by antigen receptors, costimulatory molecules, adhesion molecules, cytokines, and chemokines. These extrinsic stimuli are coupled to a diverse network of signal transduction pathways that control the transcriptional and metabolic programs that determine T-cell function. At the core of T-lymphocyte signal transduction is the regulated metabolism of inositol phospholipids and the production of two key lipid second messengers: polyunsaturated diacylglycerols (DAGs) and phosphatidylinositol (3-5) triphosphate [PI-(3-5)-P(3)].

View Article and Find Full Text PDF

Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined.

View Article and Find Full Text PDF

To investigate the importance of protein kinase D (PKD) enzymes we generated a PKD-null DT40 B-lymphocyte cell line. Previously we have shown that PKDs have an essential role in regulating class II histone deacetylases in DT40 B-cells [Matthews, S.A.

View Article and Find Full Text PDF

B-lymphocytes possess a specialized lysosomal compartment, the regulated transformation of which has been implicated in B-cell antigen presentation. Members of the mucolipin (TRPML) family of cation channels have been implicated in regulated vesicular transport in several tissues, but a role for TRPML function in lymphocyte vesicular transport physiology has not been previously described. To address the role of TRPML proteins in lymphocyte vesicular transport, we analyzed the lysosomal compartment in cultured B-lymphocytes engineered to lack TRPML1 or after expression of N- or C-terminal GFP fusion proteins of TRPML1 or TRPML2.

View Article and Find Full Text PDF

Signalling through serine/threonine kinases is a key mechanism that regulates immune cell development, activation and effector functions. An emerging theme is that serine kinases do not act in isolation, but function in a complex overlapping network. Understanding the molecular targets of serine kinases as well as their links to other serine kinases is key to advancing our understanding of the intracellular signalling pathways that link immune receptors with the gene transcriptional programs that control the immune system in vivo.

View Article and Find Full Text PDF

We have taken a knockout approach to interrogate the function of protein kinase D (PKD) serine/threonine kinases in lymphocytes. DT40 B cells express two PKD family members, PKD1 and PKD3, which are both rapidly activated by the B-cell antigen receptor (BCR). DT40 cells with single or dual deletions of PKD1 and/or PKD3 were viable, allowing the role of individual PKD isoforms in BCR signal transduction to be assessed.

View Article and Find Full Text PDF

Diacylglycerol-dependent signaling plays an important role in signal transduction through T- and B-lymphocyte antigen receptors. Recently, a novel serine-threonine kinase of the protein kinase C (PKC) family has been described and designated as PKCnu. PKCnu has two putative diacylglycerol binding C1 domains, suggesting that it may participate in a novel diacylglycerol-mediated signaling pathway.

View Article and Find Full Text PDF