Publications by authors named "Sharmistha Dutta Choudhury"

The interaction of a styryl(pyridinium)-chromene hybrid dye (DSP-C) with the 2-hydroxypropyl-β-cyclodextrin (HPβCD) macrocycle leads to a remarkably large increase (∼310-fold) in its fluorescence intensity, in contrast to the relatively smaller (∼45-fold) enhancement observed with native β-cyclodextrin (βCD). Both macrocycles (βCD and HPβCD) bind with the styryl(pyridinium) as well as the chromene fragments of the hybrid dye, with the simultaneous formation of 1:1 and 2:1 host:guest complexes. However, the binding constant (K) is more than an order of magnitude higher for HPβCD than for βCD.

View Article and Find Full Text PDF

A short monodisperse poly(ethylene glycol) (PEG) and a neutral organic rotamer conjugate TEG-BTA-2 amphiphile was designed for the construction of a stimuli-responsive switchable self-assembled structure for drug encapsulation by noncovalent interaction and targeted controlled delivery. A short PEG, tetraethylene glycol (TEG) was covalently attached with a neutral organic rotamer benzothiazole dye (BTA-2) affording the neutral TEG-BTA-2 (<500 D). The TEG-BTA-2 is self-assembled into a microsphere in an aqueous medium, but remarkably undergoes morphology change switching to a rice-like microcapsule for curcumin encapsulation.

View Article and Find Full Text PDF

This study investigates the photoacidity and excited state proton transfer (ESPT) pathways of a bifunctional molecule, 6-amino-2-naphthol (6N2OH), using absorption, steady-state fluorescence, time-resolved fluorescence, and theoretical calculations. 6N2OH attains four different prototropic forms in the excited state (cation, neutral, anion, or zwitterion) depending on pH of the solution. Interestingly, ESPT at the OH site of the molecule can be controlled by the protonation state of the amino substituent.

View Article and Find Full Text PDF

Understanding and controlling the reversible isomerization of photoactive molecules in order to obtain a tunable optical response is desirable for many photofunctional applications. This study describes the interesting effects of an anionic cyclodextrin host (sulfated-βCD, SCD) on the photoisomerization and protonation equilibrium of an important hemicyanine dye (-4-[4-(dimethylamino)styryl]-1-methylpyridinium iodide, DSP). The SCD host assists in unlocking the photoisomerization potential of DSP by promoting protonation of the dye.

View Article and Find Full Text PDF

The development of alternative plasmonic materials that can replace gold and silver is of long-standing interest in materials research. In this study, we have prepared and characterized thin films of TiN, an emerging plasmonic material, and examined its effectiveness for fluorescence coupling in metal-dielectric structures having TiN as the plasmonically active component. We have used a combination of experiment and reflectivity calculations to determine the nature and dispersion of the optical modes sustained by the metal-dielectric structures, which furthermore are adjustable by varying the thickness of the dielectric layer.

View Article and Find Full Text PDF

The assembly/disassembly of star block copolymers induced by changes in temperature or pH of the medium is anticipated to have interesting implications for hosting/releasing drugs and tuning chemical reactions. This study investigates the possibility of employing the dually sensitive self-assembly of an ethylene oxide-propylene oxide star block copolymer, Tetronic T904, to influence photoinduced electron transfer (ET) reactions, on switching from the assembled state (micelle) when temperature is above the critical micelle temperature (CMT) and pH of the medium is above the p of T904 to the dissociated (unimer) state when either the temperature is below the CMT or the polymer is protonated. Steady-state and time-resolved fluorescence techniques have been used to characterize the microenvironments of the reactants in T904 solutions under different temperature and pH conditions and to determine ET rate constants.

View Article and Find Full Text PDF

The coupling of fluorescence with surface electromagnetic modes, such as surface plasmons on thin metal films or Bloch surface waves (BSW) on truncated one-dimensional photonic crystals (1DPC), are presently utilized for many fluorescence-based applications. In addition to the surface wave, 1DPCs also support other electromagnetic modes that are confined within the 1DPC structure. These internal modes (IMs) have not received much attention for fluorescence coupling due to lack of spatial overlap of their electric fields with the surface bound fluorophores.

View Article and Find Full Text PDF

In this perspective review article, we have attempted to bring out the important current trends of research in the areas of supramolecular and suprabiomolecular photochemistry. Since the spans of the subject areas are very vast, it is impossible to cover all the aspects within the limited space of this review article. Nevertheless, efforts have been made to assimilate the basic understanding of how supramolecular interactions can significantly change the photophysical and other related physiochemical properties of chromophoric dyes and drugs, which have enormous academic and practical implications.

View Article and Find Full Text PDF

Understanding the kinetics and energetics of photoinduced electron transfer (PET) reactions in constrained media has attracted considerable research interest, as constrained media provide a handle to tune the microenvironments and consequently the mechanisms of PET reactions. In this study, PET reactions between excited 7-aminocoumarin acceptors and ground-state ,-dimethylaniline (DMAN) donor have been investigated in mixed micellar media composed of triblock copolymer, P123, and anionic surfactant, sodium dodecyl sulfate (SDS), with varying SDS-to-P123 molar ratios ( values). The objective is to elucidate the role of the values in the rates and energetics of PET reactions over the entire time range from the subpicosecond to the subnanosecond domain, especially in regard to the applicability of the two-dimensional ET (2DET) mechanism.

View Article and Find Full Text PDF

This study explores the intriguing modulations in the excitation wavelength dependence of carbon dot photoluminescence (PL), induced by the solvent medium. Our results indicate that different emissive states of carbon dots are stabilized to different extents by the surrounding solvent environment. Consequently, in some solvents, such as ethyl acetate and acetonitrile, the PL of the carbon dots is strongly dependent on the excitation wavelength, while in other solvents, like water, the PL of the same carbon dot becomes independent of the excitation wavelength.

View Article and Find Full Text PDF

This study investigates the role of varying alkyl chain lengths of a series of surface-active 1-alkyl-3-methylimidazolium tetrafluoroborate ([C MIm][BF], n = 4, 6, and 10) ionic liquids (ILs) as cosurfactants in modifying the micellar characteristics of a tetronic star-block copolymer, T1304, and the consequent effects on bimolecular photoinduced electron transfer (PET) reactions carried out in these T1304-IL mixed micellar systems. Using coumarin 153 as the probe dye and following ground-state absorption, steady-state fluorescence, and time-resolved emission measurements, the micropolarity, microviscosity, and solvent relaxation dynamics in the micellar palisade layer have been revealed both in pure T1304 and in T1304-IL systems. With increasing alkyl chain length of the ILs, the palisade layer of the micelles gradually becomes more polar and less viscous, suggesting better incorporation of the longer alkyl chain length ILs as cosurfactants into the T1304 micelles.

View Article and Find Full Text PDF

During the past decade, carbon dots have emerged as a fascinating class of luminescent nanomaterials with versatile application potentials in bioimaging, labeling, photocatalysis and optoelectronics. Currently, intensive research is concentrated on understanding the intriguing optical properties of these promising materials and their utility as luminescence sensors. In this article, we describe the photoluminescence of carbon dots obtained from a bioresource (lemon juice) and from a small molecule precursor (glycerol), especially the quenching of their emission by nitrobenzene and Hg ions, as representative cases.

View Article and Find Full Text PDF

This study explores the excited state prototropic behavior of the fluorophore, 7-hydroxy-4-methylcoumarin (7H4MC), in the [Cnmim][BF4] (n = 2, 4, 6, 8, 10) series of ionic liquid (IL)-water mixtures at low water contents. In pure IL media, 7H4MC exists in the neutral form in both ground and excited states. However, on addition of water to the ILs, the excited neutral form of the dye is gradually converted to the anionic and the tautomeric species, leading to characteristic changes in the emission spectra.

View Article and Find Full Text PDF

This study explores the interesting effect of p-sulfonatocalix[n]arene hosts (SCXn) on the excited-state tautomeric equilibrium of Chrysazine (CZ), a model antitumour drug molecule. Detailed photophysical investigations reveal that conversion of CZ from its more dipolar, excited normal form (N*) to the less dipolar, tautomeric form (T*) is hindered in SCXn-CZ host-guest complexes, which is quite unexpected considering the nonpolar cavity of the hosts. The atypical effect of SCXn is proposed to arise due to the partial inclusion or external binding of CZ with the hosts, which facilitates H-bonding interactions between CZ and the sulfonate groups present at the portals of the hosts.

View Article and Find Full Text PDF

The unidirectional proton coupled electron transfer (PCET) from the excited state of Ru(II) imidazole phenanthroline complex [Ru(bpy) ipH] to 1,4-benzoquinone, was studied by steady-state (SS) and time-resolved (TR) fluorescence and transient absorption (TA) measurements. The pK (9.7) and pK * (8.

View Article and Find Full Text PDF

Detailed photophysical investigations have been carried out using a probe dye, coumarin-153 (C153), to understand the microenvironments of micelles formed by the newly introduced Tetronic star block copolymers, T1304 and T1307, having the same poly(propylene oxide) (PPO) block size but different poly(ethylene oxide) (PEO) block sizes. Ground state absorption, steady-state fluorescence, and time-resolved fluorescence measurements have been used to estimate the micropolarity, microviscosity, and solvation dynamics within the two micelles. To the best of our knowledge, this is the first report on these important physicochemical parameters for this new class of the star block copolymer micelles.

View Article and Find Full Text PDF

Remarkable and systematic pH-dependent changes are observed in the absorption and emission spectra of carbon dots derived for the first time from lemon juice, a natural bioresource. Detailed photophysical studies of these novel carbon dots (henceforth termed LD), in conjunction with Fourier transform infrared spectra, reveal that among the two possible prototropic equilibria, phenol ↔ phenolate and carboxylic ↔ carboxylate, that occur at the surface of LD, it is the former that is actually coupled with the emissive moiety and directly involved in determining the nature of the electronic energy levels and the associated optical transitions. Apart from providing valuable mechanistic insights on the photoluminescence (PL) of carbon dots, the pH dependence of LD is also demonstrated to yield variable PL signals and perform elementary Boolean logic operations in response to chemical stimulants.

View Article and Find Full Text PDF

This study reveals the intriguing modulations in the photophysics of quinizarin (QZ) on its interaction with p-sulfonatocalix[4]arene (SCX4) and p-sulfonatocalix[6]arene (SCX6) hosts. While the SCX6-QZ system shows the usual reduction in both fluorescence intensity and lifetime, the SCX4-QZ system shows a contrasting effect of enhancement in the fluorescence intensity and reduction in the fluorescence lifetime. Such a contrasting effect is not only unusual but also observed for the first time for any host-guest system.

View Article and Find Full Text PDF

The water-assisted tautomerism of lumichrome (LC) in binary aqueous-organic solvent mixtures exhibits intriguing spectroscopic features. An especially striking and novel observation is the occurrence of an induction period or lag time for the evolution of the isoalloxazine form of LC from the excited alloxazine form. It is inferred that the observed lag time provides an overview of the changing H-bond network of the surrounding water molecules, at various compositions of the mixed solvent systems.

View Article and Find Full Text PDF

Fluorescence technology pervades all areas of chemical and biological sciences. In recent years, it is being realized that traditional fluorescence can be enriched in many ways by harnessing the power of plasmonic or photonic structures that have remarkable abilities to mold the flow of optical energy. Conventional fluorescence is omnidirectional in nature, which makes it difficult to capture the entire emission.

View Article and Find Full Text PDF

Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission.

View Article and Find Full Text PDF

The formation of molecular superstructures by metal-ion-mediated noncovalent self-assembly has been demonstrated using the macrocycle, cucurbit[7]uril (CB7), and the dye, thiazole orange (TO), as building blocks. Interestingly, the association of these molecular building blocks can be tuned by the chemical environment, leading to self-assembled structures of different stoichiometries, which is supported by absorption, fluorescence, (1)H NMR, and AFM measurements. Most importantly, the self-assembly process of the CB7/TO/metal ion system is observed to be remarkably different for alkali (Na(+)) and alkaline earth (Ca(2+)) metal ions.

View Article and Find Full Text PDF

Directional control over fluorescence emission is important for improving the sensitivity of fluorescence based techniques. In recent years, plasmonic and photonic structures have shown great promise in shaping the spectral and spatial distribution of fluorescence, which otherwise is typically isotropic in nature and independent of the observation direction. In this work we have explored the potential of metal-dielectric-metal (MDM) structures composed of Au, Ag or Al in steering the fluorescence emission from various probes emitting in the NIR, Visible or UV/blue region.

View Article and Find Full Text PDF

The intrinsically unpolarized emission from luminescent Eu(III) ions is transformed to wavelength-resolved and sharply directional polarized emission by coupling with plasmonic and photonic modes present in metal-dielectric layered substrates. This nanoscale control over lanthanide luminescence can facilitate the design of novel emissive structures with potential technological applications.

View Article and Find Full Text PDF

The photophysics of a donor-acceptor substituted chromophore, 9-amino-10-cyanoanthracene (ACAN), has been investigated in polar and nonpolar solvents to understand its intriguing dual absorption and emission behavior. Steady-state and time-resolved fluorescence studies clearly indicate that the short wavelength emission band of ACAN arises from the higher excited singlet state, S2, while the longer wavelength emission band arises from the intramolecular charge transfer (ICT) state, S1. Interestingly, both these states can be populated by direct excitation from the ground state.

View Article and Find Full Text PDF