Publications by authors named "Sharmina Miller-Randolph"

Inhibition of histone deacetylase 6 (HDAC6) was shown to support axon growth on the nonpermissive substrates myelin-associated glycoprotein (MAG) and chondroitin sulfate proteoglycans (CSPGs). Though HDAC6 deacetylates α-tubulin, we find that another HDAC6 substrate contributes to this axon growth failure. HDAC6 is known to impact transport of mitochondria, and we show that mitochondria accumulate in distal axons after HDAC6 inhibition.

View Article and Find Full Text PDF

Critical functions of intra-axonally synthesized proteins are thought to depend on regulated recruitment of mRNA from storage depots in axons. Here we show that axotomy of mammalian neurons induces translation of stored axonal mRNAs via regulation of the stress granule protein G3BP1, to support regeneration of peripheral nerves. G3BP1 aggregates within peripheral nerve axons in stress granule-like structures that decrease during regeneration, with a commensurate increase in phosphorylated G3BP1.

View Article and Find Full Text PDF

mRNA translation in axons enables neurons to introduce new proteins at sites distant from their cell body. mRNA-protein interactions drive this post-transcriptional regulation, yet knowledge of RNA binding proteins (RBP) in axons is limited. Here we used proteomics to identify RBPs interacting with the axonal localizing motifs of , , , and mRNAs, revealing many novel RBPs in axons.

View Article and Find Full Text PDF

The protective antigen (PA) moiety of anthrax toxin binds to cellular receptors and mediates the translocation of the two enzymatic moieties of the toxin to the cytosol. Two PA receptors are known, with capillary morphogenesis protein 2 (CMG2) being the more important for pathogenesis and tumor endothelial marker 8 (TEM8) playing a minor role. The C-terminal PA domain 4 (PAD4) has extensive interactions with the receptors and is required for binding.

View Article and Find Full Text PDF

To study the role of the diphthamide modification on eukaryotic elongation factor 2 (eEF2), we generated an eEF2 Gly(717)Arg mutant mouse, in which the first step of diphthamide biosynthesis is prevented. Interestingly, the Gly(717)-to-Arg mutation partially compensates the eEF2 functional loss resulting from diphthamide deficiency, possibly because the added +1 charge compensates for the loss of the +1 charge on diphthamide. Therefore, in contrast to mouse embryonic fibroblasts (MEFs) from OVCA1(-/-) mice, eEF2(G717R/G717R) MEFs retain full activity in polypeptide elongation and have normal growth rates.

View Article and Find Full Text PDF

Capillary morphogenesis protein-2 (CMG2) functions as an anthrax toxin receptor that plays an essential role in anthrax pathogenesis. Although mutations in CMG2 have been identified to cause two human autosomal recessive disorders, Juvenile Hyaline Fibromatosis and Infantile Systemic Hyalinosis, both characterized by excess hyaline material deposition in connective tissues, the physiologic function of CMG2 remains elusive. To study the roles of CMG2 in normal physiology, here we performed detailed histological analyses of the CMG2-null mice we generated previously.

View Article and Find Full Text PDF

Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis.

View Article and Find Full Text PDF

MyD88-deficient mice were previously shown to have increased susceptibility to Bacillus anthracis infection relative to wild-type animals. To determine the mechanism by which MyD88 protects against B. anthracis infection, knockout mice were challenged with nonencapsulated, toxigenic B.

View Article and Find Full Text PDF

Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms.

View Article and Find Full Text PDF

Anthrax toxin, a major virulence factor of Bacillus anthracis, gains entry into target cells by binding to either of 2 von Willebrand factor A domain-containing proteins, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2). The wide tissue expression of TEM8 and CMG2 suggest that both receptors could play a role in anthrax pathogenesis. To explore the roles of TEM8 and CMG2 in normal physiology, as well as in anthrax pathogenesis, we generated TEM8- and CMG2-null mice and TEM8/CMG2 double-null mice by deleting TEM8 and CMG2 transmembrane domains.

View Article and Find Full Text PDF