Publications by authors named "Sharmila Venugopal"

Teaching scientific literature analysis skills is a critical step in research training. Here I describe a 6-week skill-building module on understanding scientific literature, incorporated into a 10-week undergraduate honors research practice course in Neuroscience. Key pedagogical components include: 1) student-centered active-learning, skill-building and community-building activities; 2) persistent adoption of a proven CREATE method and a novel curate scientific summary (CSS) method for teaching scientific literature analysis skills; 3) collaborative class organization consisting of persistent learning pods (PLPs) to facilitate student-driven participation and peer learning; and, 4) role play of a real research lab.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) involves protracted pre-symptomatic periods of abnormal motor neuron (MN) excitability occurring in parallel with central and peripheral synaptic perturbations. Focusing on inhibitory control of MNs, we first compared longitudinal changes in pre-synaptic terminal proteins for GABA and glycine neurotransmitters around the soma of retrogradely identified trigeminal jaw closer (JC) MNs and ChAT-labeled midbrain extraocular (EO) MNs in the SOD1 mouse model for ALS. Fluorescence immunocytochemistry and confocal imaging were used to quantify GAD67 and GlyT2 synaptic bouton density (SBD) around MN soma at pre-symptomatic ages ∼P12 (postnatal), ∼P50 (adult) and near disease end-stage (∼P135) in SOD1 mice and age-matched wild-type (WT) controls.

View Article and Find Full Text PDF

Peristalsis, the coordinated contraction-relaxation of the muscles of the stomach is important for normal gastric motility and is impaired in motility disorders. Coordinated electrical depolarizations that originate and propagate within a network of interconnected layers of interstitial cells of Cajal (ICC) and smooth muscle (SM) cells of the stomach wall as a slow-wave, underly peristalsis. Normally, the gastric slow-wave oscillates with a single period and uniform rostrocaudal lag, exhibiting network entrainment.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons throughout the brain and spinal cord progressively degenerate resulting in muscle atrophy, paralysis and death. Recent studies using animal models of ALS implicate multiple cell-types (e.g.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons degenerate, resulting in muscle atrophy, paralysis, and fatality. Studies using mouse models of ALS indicate a protracted period of disease development with progressive motor neuron pathology, evident as early as embryonic and postnatal stages. Key missing information includes concomitant alterations in the sensorimotor circuit essential for normal development and function of the neuromuscular system.

View Article and Find Full Text PDF

Neurons utilize bursts of action potentials as an efficient and reliable way to encode information. It is likely that the intrinsic membrane properties of neurons involved in burst generation may also participate in preserving its temporal features. Here we examined the contribution of the persistent and resurgent components of voltage-gated Na+ currents in modulating the burst discharge in sensory neurons.

View Article and Find Full Text PDF

Intracellular Ca(2+) signaling is considered to be important for multiple astrocyte functions in neural circuits. However, mice devoid of inositol triphosphate type 2 receptors (IP3R2) reportedly lack all astrocyte Ca(2+) signaling, but display no neuronal or neurovascular deficits, implying that astrocyte Ca(2+) fluctuations are not involved in these functions. An assumption has been that the loss of somatic Ca(2+) fluctuations also reflects a similar loss in astrocyte processes.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative motoneuron disease with presently no cure. Motoneuron (MN) hyperexcitability is commonly observed in ALS and is suggested to be a precursor for excitotoxic cell death. However, it is unknown whether hyperexcitability also occurs in MNs that are resistant to degeneration.

View Article and Find Full Text PDF

The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767-783, 2007).

View Article and Find Full Text PDF

Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke).

View Article and Find Full Text PDF

The mechanism of switching activity patterns in a central pattern generator is fundamental to the generation of diverse motor behaviors. Based on what is known about a brainstem substrate mediating the oral components of ingestion and rejection, we use computational techniques to construct a hypothetical multifunctional network that switches between the motor outputs of ingestion (licking) and rejection (gaping). The network was constructed using single-compartment conductance-based models for individual neurons based on Hodgkin-Huxley formalism.

View Article and Find Full Text PDF