To address the conflicting role of thrombospondin (TSP)-1 reported in acute and chronic pathologies, this study investigated the role of TSP-1 in regulating leukocyte recruitment and regulation of VCAM-1 expression using mouse models of uveitis. The spontaneously increased VCAM-1 expression and leukocyte adhesion in retinas of TSP-1-deficient mice suggested a TSP-1-mediated regulation of VCAM-1 expression. In a chronic uveitis model, induced by immunizing wild-type mice with specific interphotoreceptor retinoid-binding protein (IRBP) peptide, topically applied TSP-1-derived CD47-binding peptide significantly reduced the clinical disease course and retinal leukocyte adhesion as compared to the control peptide-treated group.
View Article and Find Full Text PDFDifferentiating patients with Sjögren's syndrome (SS)-associated dry eye from non-SS dry eye is critical for monitoring and appropriate management of possible sight- or life-threatening extraglandular complications associated with SS. We tested whether reduced tear levels of immunoregulatory thrombospondin (TSP)-1, which also inhibits matrix metalloproteinase (MMP)-9, would reflect SS pathogenesis aiding the identification of patients with SS-dry eye. Total of 61 participants, including healthy controls (n = 20), patients with non-SS dry eye (n = 20) and SS-dry eye (n = 21) were enrolled prospectively.
View Article and Find Full Text PDFConjunctival epithelium forms a barrier between the ocular surface microbial flora and the ocular mucosa. In addition to secreting gel-forming mucins, goblet cells, located in the conjunctival epithelium, help maintain local immune homeostasis by secreting active TGFβ2 and promoting tolerogenic phenotype of dendritic cells in the vicinity. Although dendritic cell subsets, characteristic of mucosal tissues, are found in the conjunctiva, previous studies provided limited information about their location within the tissue.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
August 2021
Purpose: To assess the potential association of a thrombospondin 1 gene (THBS1) single-nucleotide polymorphism (rs1478604) with thrombospondin 1 (TSP-1) mRNA expression, as well as the risk of pterygium, in a pilot study.
Methods: DNA and RNA were isolated from peripheral blood samples collected from normal volunteer subjects (n = 39). In addition, DNA was isolated from conjunctival tissue samples collected during pterygium excision surgeries (n = 42).
Clear vision is dependent on features that protect the anatomical integrity of the eye (cornea and sclera) and those that contribute to internal ocular homeostasis by conferring hemangiogenic (avascular tissues and antiangiogenic factors), lymphangiogenic (lack of draining lymphatics), and immunologic (tight junctions that form blood-ocular barriers, immunosuppressive cells, and modulators) privileges. The later examples are necessary components that enable the eye to maintain an immunosuppressive environment that responds to foreign invaders in a deviated manner, minimizing destructive inflammation that would impair vision. These conditions allowed for the observations made by Medawar, in 1948, of delayed rejection of allogenic tissue grafts in the anterior chamber of mouse eye and permit the sequestration of foreign invaders (eg, Toxoplasma gondii) within the retina of healthy individuals.
View Article and Find Full Text PDFSjögren's syndrome (SS) is a systemic rheumatic disease that predominantly affects salivary and lacrimal glands resulting in oral and ocular dryness, respectively, referred to as sicca symptoms. The clinical presentation of ocular dryness includes keratoconjunctivitis sicca (KCS), resulting from the inflammatory damage to the ocular surface tissues of cornea and conjunctiva. The diagnostic evaluation of KCS is a critical component of the classification criteria used by clinicians worldwide to confirm SS diagnosis.
View Article and Find Full Text PDFPurpose: Systemic implications necessitate the identification of dry eye patients with Sjögren syndrome (SS). This study aims to explore the utility of tear MUC5AC and inflammatory cytokine levels in the differential diagnosis of SS-related dry eye.
Methods: A prospective, observational, case-control study was conducted on 62 patients (those with a definitive diagnosis of SS dry eye, non-SS dry eye, and age-matched healthy controls with no dry eye).
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g.
View Article and Find Full Text PDFChronic inflammation of the ocular surface poses a risk of vision impairment. The understanding of the molecular mechanisms that are involved in the inflammatory response is critical to identify novel molecular targets. Recently, thrombospondin-1 (TSP-1) has emerged as a key player in ocular surface homeostasis that efficiently activates the TGF-β2 isoform that is predominantly expressed in the ocular mucosa.
View Article and Find Full Text PDFThrombospondin-1-deficient (TSP-1) mice are used as an animal model of Sjögren's Syndrome because they exhibit many of the symptoms associated with the autoimmune type of dry eye found in primary Sjögren's Syndrome. This type of dry eye is linked to the inflammation of the lacrimal gland, conjunctiva, and cornea, and is thought to involve dysfunction of the complex neuronal reflex arc that mediates tear production in response to noxious stimuli on the ocular surface. This study characterizes the structural and functional changes to the corneal nerves that are the afferent arm of this arc in young and older TSP-1 and wild type (WT) mice.
View Article and Find Full Text PDFThe risk of developing lymphoma in patients with Sjögren's syndrome (SS) is 44 times higher than in the normal population with the most common lymphomas derived from marginal zone B (MZB) cells. Current understanding of the role of MZB cells in SS is primarily based on salivary gland pathology, while their contextual association with lacrimal glands and ocular manifestations largely remains unknown. We examined this possibility using a SS mouse model (thrombospondin-1 deficient (TSP1)) with well-characterized ocular disease.
View Article and Find Full Text PDFThe purpose of this study is to determine neural, vascular, protein secretion, and cellular signaling changes with disease progression in lacrimal glands of the thrombospondin-1 (TSP-1) mouse model of dry eye compared to C57BL/6 wild-type (WT) mice. Neural innervation was reduced in TSP-1 lacrimal glands compared to WT controls, whereas the number of blood vessels was increased. Intracellular Ca stores and the amount of lysosomes, mitochondria, and secretory granules, but not the endoplasmic reticulum, were reduced in TSP-1 compared to WT acini at 12 weeks of age.
View Article and Find Full Text PDFTherapeutic breakthroughs in a number of retinal degenerative diseases have come about through the development of biotherapeutics administered directly into the eye. As a consequence of their use, we have gained more insight into the immune privileged status of the eye and the various considerations that development, manufacturing, and use of these drugs require. It has been observed that therapeutic proteins injected into the vitreous can elicit an immune response resulting in the production of anti-drug antibodies (ADAs) which can have clinical consequences.
View Article and Find Full Text PDFThe purpose of this study was to investigate the changes that occur in the lacrimal glands (LGs) in female thrombospondin 1 knockout (TSP1) mice, a mouse model of the autoimmune disease Sjogren's syndrome. The LGs of 4, 12, and 24 week-old female TSP1 and C57BL/6J (wild type, WT) mice were used. qPCR was performed to measure cytokine expression.
View Article and Find Full Text PDFSjögren's syndrome is an autoimmune disease associated with inflammation of exocrine glands with clinical manifestations of dry eye and dry mouth. Dry eye in this disease involves inflammation of the ocular surface tissues - cornea and conjunctiva. While systemic blockade of adhesion molecules has been used to treat autoimmune diseases, the purpose of this study was to determine the therapeutic efficacy of topical application of an integrin α4 adhesion molecule antagonist in a mouse model of dry eye associated with Sjögren's syndrome.
View Article and Find Full Text PDFAn important role of transforming growth factor-β (TGF-β) in the development of regulatory T cells is well established. Although integrin-mediated activation of latent TGF-β1 is considered essential for the induction of regulatory T (Treg) cells by antigen-presenting cells (APCs), such an activation mechanism is not applicable to the TGF-β2 isoform, which lacks an integrin-binding RGD sequence in its latency-associated peptide. Mucosal and ocular tissues harbour TGF-β2-expressing APCs involved in Treg induction.
View Article and Find Full Text PDFPurpose: The potential role of commensals as triggering factors that promote inflammation in dry eye disease has not been explored. The objective of this study was to evaluate whether ocular microbiota changes with the onset of dry eye disease in thrombospondin-1-deficient (TSP-1(-/-)) mice, a strain that develops Sjögren's syndrome-like disease.
Methods: Conjunctival swabs were collected from TSP-1(-/-) and C57BL/6 mice and analyzed for bacterial presence.
Purpose: Increased expression of transforming growth factor-β2 (TGF-β2) is reported in the conjunctiva of dry eye patients with no increase of anti-inflammatory activity of TGF-β2. Our aim was to compare the expression of molecules involved in TGF-β2 activation, thrombospondin-1 (TSP-1) and CD36, during murine and human conjunctival inflammation.
Methods: Human conjunctival tissue from cadaveric donors, human conjunctival epithelial primary cells and fibroblasts, and murine conjunctivas were immunostained for TSP-1, CD36, or TGF-β2.
Background: In the murine cornea, which is an established model for analyzing pathologic lymphatic vessel growth, phenotypic heterogeneity of the endogenous lymphatic vessels in the limbus of the cornea was previously described. In this study, the cornea of BALB/c, C57BL/6, and FVB mice with different limbal lymphangiogenic phenotypes was analyzed to identify novel candidates potentially influencing lymphatic vessel growth.
Methods And Results: Pathway specific expression analysis of the cornea was performed to identify novel candidate genes.
Goblet cells are secretory epithelial cells of mucosal tissues that confer protection from environmental agents or pathogens via expression and secretion of soluble mucins. Loss of these cells is associated with several chronic inflammatory disorders of the mucosa. Although demonstrated to transfer antigens from the luminal surface to stromal cells in the intestinal mucosa, it is not known if goblet cells contribute to the regulation of an immune response.
View Article and Find Full Text PDFCurr Opin Allergy Clin Immunol
October 2014
Purpose Of Review: Although conjunctival goblet cells are a major cell type in ocular mucosa, their responses during ocular allergy are largely unexplored. This review summarizes the recent findings that provide key insights into the mechanisms by which their function and survival are altered during chronic inflammatory responses, including ocular allergy.
Recent Findings: Conjunctiva represents a major component of the ocular mucosa that harbors specialized lymphoid tissue.
Purpose: To determine the association of single nucleotide polymorphisms (SNPs) of the thrombospondin 1 (THBS1) gene with development of chronic ocular surface inflammation (keratoconjunctivitis) after refractive surgery.
Design: Retrospective cohort study.
Participants: Active duty U.
Background: The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1(b) and Gpnmb(R150X)) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation.
View Article and Find Full Text PDF