Publications by authors named "Sharmila Mallya"

Monocytes are actively recruited to sites of infection and produce the potent proinflammatory cytokine IL-1β. We previously showed that IL-1β release during Toxoplasma gondii infection of primary human monocytes requires the NLRP3 inflammasome and caspase-1 but is independent of gasdermin D and pyroptosis. To investigate mechanisms of IL-1β release, we generated caspase-1, -4, -5, or -8 knockout (KO) THP-1 monocytic cells.

View Article and Find Full Text PDF

Unlabelled: The BCL2 inhibitor venetoclax promotes apoptosis in blood cancer cells and is approved for treatment of chronic lymphocytic leukemia and acute myeloid leukemia. However, multiple myeloma cells are frequently more dependent on MCL-1 for survival, conferring resistance to venetoclax. Here we report that mevalonate pathway inhibition with statins can overcome resistance to venetoclax in multiple myeloma cell lines and primary cells.

View Article and Find Full Text PDF

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. Although most previous studies have focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) is a kinase whose activation is associated with poor prognosis in pre-B cell acute lymphoblastic leukemia (B-ALL). These and other findings have prompted diverse strategies for targeting mTOR signaling in B-ALL and other B-cell malignancies. In cellular models of Philadelphia Chromosome-positive (Ph+) B-ALL, mTOR kinase inhibitors (TOR-KIs) that inhibit both mTOR-complex-1 (mTORC1) and mTOR-complex-2 (mTORC2) enhance the cytotoxicity of tyrosine kinase inhibitors (TKIs) such as dasatinib.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) is a kinase whose activity is elevated in hematological malignancies. mTOR-complex-1 (mTORC1) phosphorylates numerous substrates to promote cell proliferation and survival. Eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) are mTORC1 substrates with an integral role in oncogenic protein translation.

View Article and Find Full Text PDF

The cap-binding protein eukaryotic initiation factor 4E (eIF4E) promotes translation of mRNAs associated with proliferation and survival and is an attractive target for cancer therapeutics. Here, we used germline and conditional knockout models to assess the impact of reduced gene dosage on B-cell leukemogenesis compared to effects on normal pre-B and mature B-cell function. Using a BCR-ABL-driven pre-B-cell leukemia model, we find that loss of one allele of impairs transformation and reduces fitness in competition assays and .

View Article and Find Full Text PDF

is an intracellular protozoan parasite that has the remarkable ability to infect and replicate in neutrophils, immune cells with an arsenal of antimicrobial effector mechanisms. We report that infection extends the life span of primary human peripheral blood neutrophils by delaying spontaneous apoptosis, serum starvation-induced apoptosis, and tumor necrosis alpha (TNF-α)-mediated apoptosis. blockade of apoptosis was associated with an inhibition of processing and activation of the apoptotic caspases caspase-8 and -3, decreased phosphatidylserine exposure on the plasma membrane, and reduced cell death.

View Article and Find Full Text PDF

Background: The BCL2 inhibitor venetoclax has shown efficacy in several hematologic malignancies, with the greatest response rates in indolent blood cancers such as chronic lymphocytic leukaemia. There is a lower response rate to venetoclax monotherapy in diffuse large B-cell lymphoma (DLBCL).

Methods: We tested inhibitors of cap-dependent mRNA translation for the ability to sensitise DLBCL and mantle cell lymphoma (MCL) cells to apoptosis by venetoclax.

View Article and Find Full Text PDF

can infect and replicate in vascular endothelial cells prior to entering host tissues. However, little is known about the molecular interactions at the parasite-endothelial cell interface. We demonstrate that infection of primary human umbilical vein endothelial cells (HUVEC) altered cell morphology and dysregulated barrier function, increasing permeability to low-molecular-weight polymers.

View Article and Find Full Text PDF

IL-1β is a potent pro-inflammatory cytokine that promotes immunity and host defense, and its dysregulation is associated with immune pathology. Toxoplasma gondii infection of myeloid cells triggers the production and release of IL-1β; however, the mechanisms regulating this pathway, particularly in human immune cells, are incompletely understood. We have identified a novel pathway of T.

View Article and Find Full Text PDF

Statins have shown promise as anticancer agents in experimental and epidemiologic research. However, any benefit that they provide is likely context-dependent, for example, applicable only to certain cancers or in combination with specific anticancer drugs. We report that inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) using statins enhances the proapoptotic activity of the B cell lymphoma-2 (BCL2) inhibitor venetoclax (ABT-199) in primary leukemia and lymphoma cells but not in normal human peripheral blood mononuclear cells.

View Article and Find Full Text PDF

High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) include Philadelphia chromosome-positive (Ph+) B-ALL driven by the oncogene and a more recently identified subtype known as -like or Ph-like B-ALL. A hallmark of both Ph+ and Ph-like B-ALL is constitutive activation of tyrosine kinase signaling that is potentially targetable with tyrosine kinase inhibitors (TKIs). B-ALL cells also receive extracellular signals from the microenvironment that can maintain proliferation and survival following treatment with TKIs.

View Article and Find Full Text PDF
Article Synopsis
  • The class I PI3Ks are key enzymes that transmit signals important for B cell functions, and their elevated signaling is linked to B cell malignancies and autoimmune diseases.
  • Idelalisib, the only FDA-approved selective p110δ inhibitor, targets this isoform crucial for B cell development; however, there's a need for more research on PI3K inhibitors in autoimmunity.
  • The study tested a new p110δ inhibitor, IPI-3063, which significantly reduced mouse and human B cell proliferation while enhancing antibody class switching, highlighting p110δ's dominant role in regulating B cell responses.
View Article and Find Full Text PDF

Elevated activity of mTOR is associated with poor prognosis and higher incidence of relapse in B-cell acute lymphoblastic leukemia (B-ALL). Thus, ongoing clinical trials are testing mTOR inhibitors in combination with chemotherapy in B-ALL. However, the combination of mTOR inhibitors with standard of care chemotherapy drugs has not been studied extensively in high-risk B-ALL subtypes.

View Article and Find Full Text PDF

Rapamycin has been used as a clinical immunosuppressant for many years; however, the molecular basis for its selective effects on lymphocytes remains unclear. We investigated the role of two canonical effectors of the mammalian target of rapamycin (mTOR): ribosomal S6 kinases (S6Ks) and eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs). S6Ks are thought to regulate cell growth (increase in cell size), and 4E-BPs are thought to control proliferation (increase in cell number), with mTORC1 signaling serving to integrate these processes.

View Article and Find Full Text PDF

High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphoinositide 3-kinases (PI3Ks), especially the p110α isoform, are important in cancer therapy since mutations in the PIK3CA gene are common in tumors.
  • A study found that while pan-PI3K inhibitors hindered the ability of natural killer (NK) cells to attack tumor cells, selective inhibitors targeting p110α did not affect NK cell functions significantly.
  • These findings suggest that using p110α-selective inhibitors in treating cancers might allow NK cells to maintain their activity in fighting tumors, especially those with PIK3CA mutations.
View Article and Find Full Text PDF

Inhibitors of the mechanistic target of rapamycin (mTOR) hold promise for treatment of hematological malignancies. Analogs of the allosteric mTOR inhibitor rapamycin are approved for mantle cell lymphoma but have limited efficacy in other blood cancers. ATP-competitive "active-site" mTOR inhibitors produce more complete mTOR inhibition and are more effective than rapamycin in preclinical models of leukemia, lymphoma and multiple myeloma.

View Article and Find Full Text PDF

Targeting the mammalian target of rapamycin (mTOR) protein is a promising strategy for cancer therapy. The mTOR kinase functions in two complexes, TORC1 (target of rapamycin complex-1) and TORC2 (target of rapamycin complex-2); however, neither of these complexes is fully inhibited by the allosteric inhibitor rapamycin or its analogs. We compared rapamycin with PP242, an inhibitor of the active site of mTOR in both TORC1 and TORC2 (hereafter referred to as TORC1/2), in models of acute leukemia harboring the Philadelphia chromosome (Ph) translocation.

View Article and Find Full Text PDF