Point mutations M232R (PrP(232R)), M232T (PrP(232T)), and P238S (PrP(238S)) in the glycosylphosphatidylinositol signal peptide (GPI-SP) of the prion protein (PrP(C)) segregate with familial Creutzfeldt-Jakob disease (CJD). However, the mechanism by which these mutations induce cytotoxicity is unclear since the GPI-SP is replaced by a GPI anchor within 5 min of PrP synthesis and translocation into the endoplasmic reticulum (ER). To examine if mutations in this region interfere with translocation of nascent PrP into the ER or anchor addition, the metabolism of PrP(232R) and PrP(232T) was investigated in transfected human neuroblastoma cells.
View Article and Find Full Text PDFTransmissible Spongiform Encephalopathies are fatal neurodegenerative disorders of humans and animals that are familial, sporadic, and infectious in nature. Familial disorders of humans include Gerstmann-Straussler-Scheinker disease (GSS), familial Creutzfeldt-Jakob disease (CJD), and fatal familial insomnia, and result from point mutations in the prion protein gene. Although neurotoxicity in familial cases is believed to result from a spontaneous change in conformation of mutant prion protein (PrP) to the pathogenic PrP-scrapie (PrPSc) form, emerging evidence indicates otherwise.
View Article and Find Full Text PDFAlthough familial prion disorders are a direct consequence of mutations in the prion protein gene, the underlying mechanisms leading to neurodegeneration remain unclear. Potential pathogenic mechanisms include abnormal cellular metabolism of the mutant prion protein (PrP(M)), or destabilization of PrP(M) structure inducing a change in its conformation to the pathogenic PrP-scrapie (PrP(Sc)) form. To further clarify these mechanisms, we investigated the biogenesis of mutant PrP V203I and E211Q associated with Creutzfeldt-Jakob disease, and PrP Q212P associated with Gerstmann-Straussler-Scheinker syndrome in neuroblastoma cells.
View Article and Find Full Text PDFA familial prion disorder with a proline to leucine substitution at residue 102 of the prion protein (PrP(102L)) is typically associated with protease-resistant PrP fragments (PrP(Sc)) in the brain parenchyma that are infectious to recipient animals. When modeled in transgenic mice, a fatal neurodegenerative disease develops, but, unlike the human counterpart, PrP(Sc) is lacking and transmission to recipient animals is questionable. Alternate mice expressing a single copy of PrP(102L) (mouse PrP(101L)) do not develop spontaneous disease, but show dramatic susceptibility to PrP(Sc) isolates from different species.
View Article and Find Full Text PDFPrion diseases or transmissible spongiform encephalopathies are neurodegenerative disorders that are genetic, sporadic, or infectious. The pathogenetic event common to all prion disorders is a change in conformation of the cellular prion protein (PrPC) to the scrapie isoform (PrPSc), which, unlike PrPC, aggregates easily and is partially resistant to protease digestion. Although PrPSc is believed to be essential for the pathogenesis and transmission of prion disorders, the mechanism by which PrPSc deposits cause neurodegeneration is unclear.
View Article and Find Full Text PDF