Comput Struct Biotechnol J
April 2020
The brain is a highly complex organ consisting of numerous types of cells with ample diversity at the epigenetic level to achieve distinct gene expression profiles. During neuronal cell specification, transcription factors (TFs) form regulatory modules with chromatin remodeling proteins to initiate the cascade of epigenetic changes. Currently, little is known about brain epigenetic regulatory modules and how they regulate gene expression in a cell-type specific manner.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2019
DNA methylation is an epigenetic modification modulating the structure of DNA molecule and the interactions with its binding proteins. Accumulating large-scale methylation data motivates the development of analytic tools to facilitate methylome data mining. One critical phenomenon associated with dynamic DNA methylation is the altered DNA binding affinity of transcription factors, which plays key roles in gene expression regulation.
View Article and Find Full Text PDFDNA methylation plays important roles in the regulation of nervous system development and in cellular responses to environmental stimuli such as light-derived signals. Despite great efforts in understanding the maturation and refinement of visual circuits, we lack a clear understanding of how changes in DNA methylation correlate with visual activity in the developing subcortical visual system, such as in the dorsal lateral geniculate nucleus (dLGN), the main retino-recipient region in the dorsal thalamus. Here, we explored epigenetic dynamics underlying dLGN development at ages before and after eye opening in wild-type mice and mutant mice in which retinal ganglion cells fail to form.
View Article and Find Full Text PDFGene expression regulation is a complex process involving the interplay between transcription factors and chromatin states. Significant progress has been made toward understanding the impact of chromatin states on gene expression. Nevertheless, the mechanism of transcription factors binding combinatorially in different chromatin states to enable selective regulation of gene expression remains an interesting research area.
View Article and Find Full Text PDFOne of the important tasks in cancer research is to identify biomarkers and build classification models for clinical outcome prediction. In this paper, we develop a CyNetSVM software package, implemented in Java and integrated with Cytoscape as an app, to identify network biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape app of NetSVM is specifically designed to improve the usability of NetSVM with the following enhancements: (1) user-friendly graphical user interface (GUI), (2) computationally efficient core program and (3) convenient network visualization capability.
View Article and Find Full Text PDF