Publications by authors named "Sharmeen Chagani"

Article Synopsis
  • - Patients with cholangiocarcinoma experience poor outcomes due to late diagnoses and limited treatments, prompting research into effective drug combinations.
  • - A genome-wide CRISPR screen identified that the BET PROTAC degrader ARV825 synergizes with mTOR pathway inhibitors, leading to increased apoptosis and cell cycle arrest in cancer cells.
  • - The combination treatment also resulted in tumor regression in xenograft models, highlighting the role of epigenetic regulation and metabolic pathways, particularly involving the enzymes PHGDH and PSAT1, as key targets for future therapy development.
View Article and Find Full Text PDF

Loss of protein expression of the tumor suppressor PTEN is associated with increased cancer aggressiveness, decreased tumor immune infiltration, and resistance to immune and targeted therapies in melanoma. We assessed a unique cohort of eight melanoma samples with focal loss of PTEN protein expression to understand the features and mechanisms of PTEN loss in this disease. We compared the PTEN-negative (PTEN[-]) areas to their adjacent PTEN-positive (PTEN[+]) areas using DNA sequencing, DNA methylation, RNA expression, digital spatial profiling, and immunohistochemical platforms.

View Article and Find Full Text PDF

Purpose: mutations occur in about 30% of patients with cholangiocarcinoma. Analysis of mutations in circulating tumor DNA (ctDNA) can be performed by droplet digital polymerase chain reaction (ddPCR). The analysis of ctDNA is a feasible approach to detect mutations.

View Article and Find Full Text PDF

Background And Aims: Cholangiocarcinoma (CCA) is a deadly and highly therapy-refractory cancer of the bile ducts, with early results from immune checkpoint blockade trials showing limited responses. Whereas recent molecular assessments have made bulk characterizations of immune profiles and their genomic correlates, spatial assessments may reveal actionable insights.

Approach And Results: Here, we have integrated immune checkpoint-directed immunohistochemistry with next-generation sequencing of resected intrahepatic CCA samples from 96 patients.

View Article and Find Full Text PDF

Primary sclerosing cholangitis and colitis are known predisposing factors for bile duct cancer, but their exact pro-oncogenic mechanisms are unclear. In this issue of , Zhang and colleagues identify intestinal barrier impairment as a key mechanism, resulting in gut microbes spilling into the portal vein, in turn recruiting immunosuppressive myeloid-derived suppressor cells and promoting cholangiocarcinoma..

View Article and Find Full Text PDF

Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAF oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas.

View Article and Find Full Text PDF

The study and comprehension of the molecular mechanisms underlying cancer biology strongly rely on mouse modeling. An ideal mouse model should have molecular, histopathological, and etiological characteristics as close as possible to those of the corresponding human tumors. Among solid tumors, colorectal cancer (CRC) is one of the malignancies that best suits reproduction in an animal model: it evolves through a progressive set of molecular events and is generally associated with a precise histopathology and a neat cataloging of stages and grades.

View Article and Find Full Text PDF

Background: Understanding the underlying molecular mechanisms involved in the formation of cutaneous malignant melanoma is critical for improved diagnosis and treatment. Keratinocytic nuclear receptor Retinoid X Receptor α (RXRα) has a protective role against melanomagenesis and is involved in the regulation of keratinocyte and melanocyte homeostasis subsequent acute ultraviolet (UV) irradiation.

Methods: We generated a trigenic mouse model system (RXRα | Tyr-NRAS | CDK4 ) harboring an epidermal knockout of Retinoid X Receptor α (RXRα ), combined with oncogenic NRAS (constitutively active RAS) and activated CDK4 (constitutively active CDK4).

View Article and Find Full Text PDF

Tumor evolution is an iterative process of selection for pro-oncogenic aberrations. This process can be accelerated by genomic instability, but how it interacts with different selection bottlenecks to shape the evolving genomic landscape remains understudied. Here, we assessed tumor initiation and therapy resistance bottlenecks in mouse models of melanoma, with or without genomic instability.

View Article and Find Full Text PDF

Metastatic melanoma has a high mortality rate due to lymphatic progression of the disease. Current treatment is surgery followed by radiation and intravenous chemotherapy. However, drawbacks for current chemotherapeutics lie in the fact that they develop resistance and do not achieve therapeutic concentrations in the lymphatic system.

View Article and Find Full Text PDF

Unlabelled: Understanding the molecular mechanisms behind formation of melanoma, the deadliest form of skin cancer, is crucial for improved diagnosis and treatment. One key is to better understand the cross-talk between epidermal keratinocytes and pigment-producing melanocytes. Here, using a bigenic mouse model system combining mutant oncogenic NRAS(Q61K) (constitutively active RAS) or mutant activated CDK4(R24C/R24C) (prevents binding of CDK4 by kinase inhibitor p16(INK4A)) with an epidermis-specific knockout of the nuclear retinoid X receptor alpha (RXRα(ep-/-)) results in increased melanoma formation after chronic ultraviolet-B (UVB) irradiation compared with control mice with functional RXRα.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines.

View Article and Find Full Text PDF

It is appreciated far and wide that increased and regular consumption of fruits and vegetables is linked with noteworthy anticancer benefits. Extensively consumed as a spice in foods and beverages worldwide, ginger (Zingiber officinale Roscoe) is an excellent source of several bioactive phenolics, including non-volatile pungent compounds such as gingerols, paradols, shogaols and gingerones. Ginger has been known to display anti-inflammatory, antioxidant and antiproliferative activities, indicating its promising role as a chemopreventive agent.

View Article and Find Full Text PDF