Breast cancer, particularly triple-negative breast cancer (TNBC), is a major cause of women's mortality, and effective treatment options are still lacking due to the absence of known mechanisms and biomarkers. Therefore, unveiling novel molecular mechanisms to identify potential biomarkers is urgently needed to ensure an effective TNBC treatment. In this study, we investigated the role of PHLPP1, a tumor suppressor gene, in the tumorigenesis and induction of cancer stem cells in TNBC using publicly available data and experimental protocols.
View Article and Find Full Text PDFIn this study we substituted the retinal units in proteorhodopsin (PR) and bacteriorhodopsin (BR) with azo chromophores to investigate the mechanism of photoinduced proton pumping in rhodopsins and potentially develop new artificial molecular pumps. We used an indium tin oxide electrode to investigate the photoinduced proton transfer of the azo analogues of PR and BR. We also employed flash photolysis to determine the characteristic photocycles, comprising multiple transient intermediates, of the azo chromophore-bound PR and BR.
View Article and Find Full Text PDF