Addressing the challenges of enhancing water-splitting efficiency necessitates the exploration and rational design of high-performance and durable electrocatalysts with appealing nanoarchitectures. In this study, we present the design and fabrication of conjugated cMOF/LDH hetero-nano petals decorated with monodispersed Metal-N sites, which are uniformly shelled over tungsten oxynitride (WNO) nanowire arrays to form a unique core-shell architecture. For this rational engineering, WNO nanowire arrays were grown on carbon cloth.
View Article and Find Full Text PDFThe pursuit of efficient and sustainable hydrogen production through water splitting has led to intensive research in the field of electrocatalysis. However, the impediment posed by sluggish reaction kinetics has served as a significant barrier. This challenge has inspired the development of electrocatalysts characterized by high activity, abundance in earth's resources, and long-term stability.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2022
Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure-composition-property relationships and catalyst activity is very important and highly desirable.
View Article and Find Full Text PDFOver the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts. Nevertheless, finding a straightforward and effective route to prepare efficient catalysts with unique structural features and optimal supports still is a big challenge. Among the various candidates, metal-organic framework (MOF)-derived materials show great advantages as new kinds of active non-precious catalysts.
View Article and Find Full Text PDFIn this work, we present the design and fabrication of a novel nanocomposite based on noble metal and metal oxide nanoparticles dispersed on highly porous carbon obtained via the pyrolysis of an inorganic complex and metal-organic frameworks. This nanocomposite is prepared by a two-step procedure: first, the composite support of nanoporous carbon (NPC) is obtained by the direct carbonization of the Cr-benzene dicarboxylic ligand (BDC) MOF in an Argon atmosphere at 500 °C (CrO-NPC). A mixture containing CrO-NPC and [PtCl(SnCl)(SMe)] is then prepared, and underflow of Argon is heated to 380 °C.
View Article and Find Full Text PDF