Background: Cell imaging is becoming an indispensable tool for cell and molecular biology research. However, most processes studied are stochastic in nature, and require the observation of many cells and events. Ideally, extraction of information from these images ought to rely on automatic methods.
View Article and Find Full Text PDFIn Escherichia coli, tetracycline prevents translation. When subject to tetracycline, E. coli express TetA to pump it out by a mechanism that is sensitive, while fairly independent of cellular metabolism.
View Article and Find Full Text PDFEscherichia coli cells employ an asymmetric strategy at division, segregating unwanted substances to older poles, which has been associated with aging in these organisms. The kinetics of this process is still poorly understood. Using the MS2 coat protein fused to green fluorescent protein (GFP) and a reporter construct with multiple MS2 binding sites, we tracked individual RNA-MS2-GFP complexes in E.
View Article and Find Full Text PDFAim: We present our experiences in the management of extradural haematoma in children which involved an aggressive diagnostic approach, prompt surgical evacuation results in an excellent outcome.
Material And Methods: 170 EDH patients who underwent surgery in our department from January 2006 to July 2010 included in this prospective study. Each patient evaluated in term of age, sex, mode of injury, localization of haematoma, clinical presentation, CT findings, operative measures and outcome.
We explore the effects of probabilistic RNA partitioning during cell division on the normalized variance of RNA numbers across generations of bacterial populations. We first characterize these effects in model cell populations, where gene expression is modeled as a delayed stochastic process, as a function of the synchrony in cell division, the rate of division, and the RNA degradation rate. We further explore the additional variance that arises if the partitioning is biased.
View Article and Find Full Text PDFGene regulatory networks (GRNs) are parallel information processing systems, binding past events to future actions. Since cell types stably remain in restricted subsets of the possible states of the GRN, they are likely the dynamical attractors of the GRN. These attractors differ in which genes are active and in the amount of information propagating within the network.
View Article and Find Full Text PDFBackground: A gene network's capacity to process information, so as to bind past events to future actions, depends on its structure and logic. From previous and new microarray measurements in Saccharomyces cerevisiae following gene deletions and overexpressions, we identify a core gene regulatory network (GRN) of functional interactions between 328 genes and the transfer functions of each gene. Inferred connections are verified by gene enrichment.
View Article and Find Full Text PDFMolecular interaction networks establish all cell biological processes. The networks are under intensive research that is facilitated by new high-throughput measurement techniques for the detection, quantification, and characterization of molecules and their physical interactions. For the common model organism yeast Saccharomyces cerevisiae, public databases store a significant part of the accumulated information and, on the way to better understanding of the cellular processes, there is a need to integrate this information into a consistent reconstruction of the molecular interaction network.
View Article and Find Full Text PDFBackground: Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed.
View Article and Find Full Text PDF