New Phytol
January 2025
Early stress detection of crops requires a thorough understanding of the signals showing the very first symptoms of the alterations in the photosynthetic light reactions. Detection of the activation of the regulated heat dissipation mechanism is crucial to complement passively induced fluorescence to resolve ambuiguities in energy partitioning. Using leaf spectroscopy, we evaluated the capability of pigment spectral unmixing to calculate the fluorescence quantum efficiency (FQE) and simultaneously retrieve fast absorption changes in a drought and nitrogen deficiency experiment with tomato.
View Article and Find Full Text PDFThe water of high Andean lakes is strongly affected by anthropic activities. However, due to its complexity this ecosystem is poorly researched. This study analyzes water quality using Sentinel-2 (S2) images in high Andean lakes with apparent different eutrophication states.
View Article and Find Full Text PDFPlant Soil
June 2022
Background And Aims: The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied.
Methods: The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers.
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture.
View Article and Find Full Text PDFCarbon Balance Manag
November 2021
Background: Soil organic carbon (SOC) affects essential biological, biochemical, and physical soil functions such as nutrient cycling, water retention, water distribution, and soil structure stability. The Andean páramo known as such a high carbon and water storage capacity ecosystem is a complex, heterogeneous and remote ecosystem complicating field studies to collect SOC data. Here, we propose a multi-predictor remote quantification of SOC using Random Forest Regression to map SOC stock in the herbaceous páramo of the Chimborazo province, Ecuador.
View Article and Find Full Text PDFFor decades, the dynamic nature of chlorophyll a fluorescence (ChlaF) has provided insight into the biophysics and ecophysiology of the light reactions of photosynthesis from the subcellular to leaf scales. Recent advances in remote sensing methods enable detection of ChlaF induced by sunlight across a range of larger scales, from using instruments mounted on towers above plant canopies to Earth-orbiting satellites. This signal is referred to as solar-induced fluorescence (SIF) and its application promises to overcome spatial constraints on studies of photosynthesis, opening new research directions and opportunities in ecology, ecophysiology, biogeochemistry, agriculture and forestry.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
February 2021
Carotenoids (Cars) regulate the energy flow towards the reaction centres in a versatile way whereby the switch between energy harvesting and dissipation is strongly modulated by the operation of the xanthophyll cycles. However, the cascade of molecular mechanisms during the change from light harvesting to energy dissipation remains spectrally poorly understood. By characterizing the in vivo absorbance changes (ΔA) of leaves from four species in the 500-600 nm range through a Gaussian decomposition, while measuring passively simultaneous Chla fluorescence (F) changes, we present a direct observation of the quick antenna adjustments during a 3-min dark-to-high-light induction.
View Article and Find Full Text PDFRegulated heat dissipation under excessive light comprises a complexity of mechanisms, whereby the supramolecular light-harvesting pigment-protein complex (LHC) shifts state from light harvesting towards heat dissipation, quenching the excess of photo-induced excitation energy in a non-photochemical way. Based on whole-leaf spectroscopy measuring upward and downward spectral radiance fluxes, we studied spectrally contiguous (hyperspectral) transient time series of absorbance A(λ,t) and passively induced chlorophyll fluorescence F(λ,t) dynamics of intact leaves in the visible and near-infrared wavelengths (VIS-NIR, 400-800 nm) after sudden strong natural-like illumination exposure. Besides light avoidance mechanism, we observed on absorbance signatures, calculated from simultaneous reflectance R(λ,t) and transmittance T(λ,t) measurements as A(λ,t) = 1 - R(λ,t) - T(λ,t), major dynamic events with specific onsets and kinetical behaviour.
View Article and Find Full Text PDFThe spatial quantification of green leaf area index (LAI), the total green photosynthetically active leaf area per ground area, is a crucial biophysical variable for agroecosystem monitoring. The Sentinel-2 mission is with (1) a temporal resolution lower than a week, (2) a spatial resolution of up to 10 m, and (3) narrow bands in the red and red-edge region, a highly promising mission for agricultural monitoring. The aim of this work is to define an easy implementable LAI index for the Sentinel-2 mission.
View Article and Find Full Text PDFCrop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale.
View Article and Find Full Text PDFIn urban areas, the demand for local assessment of air quality is high. The existing monitoring stations cannot fulfill the needs. This study assesses the potential of hyperspectral tree leaf reflectance for monitoring traffic related air pollution.
View Article and Find Full Text PDFThe reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species.
View Article and Find Full Text PDFWe investigated the influence of leaf traits, rainwater chemistry, and pedospheric nitrogen (N) fertilisation on the aqueous uptake of inorganic N by physiologically active tree leaves. Leaves of juvenile silver birch and European beech trees, supplied with NH₄NO₃ to the soil at rates from 0 to 200 kg N ha(-1)y(-1), were individually exposed to 100 μl of artificial rainwater containing (15)NH₄(+) or (15)NO₃(-) at two concentration levels for one hour. In the next vegetative period, the experiment was repeated with NH₄(+) at the highest concentration only.
View Article and Find Full Text PDFUnderstanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium.
View Article and Find Full Text PDFBiomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles.
View Article and Find Full Text PDFBiochemical and structural leaf properties such as chlorophyll content (Chl), nitrogen content (N), leaf water content (LWC), and specific leaf area (SLA) have the benefit to be estimated through nondestructive spectral measurements. Current practices, however, mainly focus on a limited amount of wavelength bands while more information could be extracted from other wavelengths in the full range (400-2500nm) spectrum. In this research, leaf characteristics were estimated from a field-based multi-species dataset, covering a wide range in leaf structures and Chl concentrations.
View Article and Find Full Text PDFBiomagnetic monitoring of urban tree leaves has proven to be a good estimator of ambient particulate matter. We evaluated its relevancy by determining leaf area normalised weight (mg m(-2)) and SIRM (A) of leaf-deposited particles within three different size fractions (>10 μm, 3-10 μm and 0.2-3 μm) and the SIRM of the leaf-encapsulated particles.
View Article and Find Full Text PDFTo better understand the potential uses of vegetation indices based on the sun-induced upward and downward chlorophyll fluorescence at leaf and at canopy scales, a field study was carried out in the city of Valencia (Spain). Fluorescence yield (FY) indices were derived for trees at different traffic intensity locations and at three canopy heights. This allowed investigating within-tree and between-tree variations of FY indices for four tree species.
View Article and Find Full Text PDFPassive steady-state chlorophyll fluorescence (Fs) provides a direct diagnosis of the functional status of vegetation photosynthesis. With the prospect of mapping Fs using remote sensing techniques, field measurements are mandatory to understand to which extent Fs allows detecting plant stress in different environments. Trees of four common species in Valencia were classified in either a low or a high local traffic exposure class based on their leaf magnetic value.
View Article and Find Full Text PDF