Publications by authors named "Shari R Saideman"

Neuronal network flexibility enables animals to respond appropriately to changes in their internal and external states. We are using the isolated crab stomatogastric nervous system to determine how extrinsic inputs contribute to network flexibility. The stomatogastric system includes the well-characterized gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits in the stomatogastric ganglion.

View Article and Find Full Text PDF

Neuromodulation changes the cellular and synaptic properties of neurons, thereby enabling individual neuronal circuits to generate multiple activity patterns. However, distinct modulatory inputs could conceivably also cona different motor circuits to generate similar activity patterns. Using the isolated stomatogastric ganglion (STG) of the crab Cancer borealis, we showed previously that pyrokinin (PK) peptides activate the gastric mill (chewing) rhythm without the participation of the projection neuron modulatory commissural neuron 1 (MCN1).

View Article and Find Full Text PDF

Pyrokinin (PK) peptides localize to the central and peripheral nervous systems of arthropods, but their actions in the CNS have yet to be studied in any species. Here, we identify PK peptide family members in the crab Cancer borealis and characterize their actions on the gastric mill (chewing) and pyloric (filtering) motor circuits in the stomatogastric ganglion (STG). We identified PK-like immunolabeling in the STG neuropil, in projection neuron inputs to this ganglion, and in the neuroendocrine pericardial organs.

View Article and Find Full Text PDF

To fully understand neuronal network operation, the influence of all inputs onto that network must be characterized. As in most systems, many neuronal and hormonal pathways influence the multifunctional motor circuits of the crustacean stomatogastric ganglion (STG), but the actions of only some of them are known. Therefore, we characterized the influence of the kinin peptide family on the gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits in the STG of the crab Cancer borealis.

View Article and Find Full Text PDF

Phasically active sensory systems commonly influence rhythmic motor activity via synaptic actions on the relevant circuit and/or motor neurons. Using the crab stomatogastric nervous system (STNS), we identified a distinct synaptic action by which an identified proprioceptor, the gastropyloric muscle stretch receptor (GPR) neuron, regulates the gastric mill (chewing) motor rhythm. Previous work showed that rhythmically stimulating GPR in a gastric mill-like pattern, in the isolated STNS, elicits the gastric mill rhythm via its activation of two identified projection neurons, modulatory commissural neuron 1 (MCN1) and commissural projection neuron 2, in the commissural ganglia.

View Article and Find Full Text PDF