Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions.
View Article and Find Full Text PDFMost antipsychotic drugs (APDs) induce hyperphagia and weight gain. However, the neural mechanisms are poorly understood, partly due to challenges replicating their metabolic effects in rodents. Here, we report a new mouse model that recapitulates overeating induced by clozapine, a widely prescribed APD.
View Article and Find Full Text PDFLittle is known of the brain mechanisms that mediate sex-specific autism symptoms. Here, we demonstrate that deletion of the autism spectrum disorder (ASD)-risk gene, Pten, in neocortical pyramidal neurons (Pten knockout [KO]) results in robust cortical circuit hyperexcitability selectively in female mice observed as prolonged spontaneous persistent activity states. Circuit hyperexcitability in females is mediated by metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) signaling to mitogen-activated protein kinases (Erk1/2) and de novo protein synthesis.
View Article and Find Full Text PDFAutism manifests differently in males and females and the brain mechanisms that mediate these sex-dependent differences are unknown. Here, we demonstrate that deletion of the ASD-risk gene, in neocortical pyramidal neurons (NSE KO) results in robust hyperexcitability of local neocortical circuits in female, but not male, mice, observed as prolonged, spontaneous persistent activity states (UP states). Circuit hyperexcitability in NSE KO mice is mediated by enhanced and/or altered signaling of metabotropic glutamate receptor 5 (mGluR5) and estrogen receptor α (ERα) to ERK and protein synthesis selectively in deleted female neurons.
View Article and Find Full Text PDFThe anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants.
View Article and Find Full Text PDFNovel treatments, screening, and detection methods have prolonged the lives of numerous cancer patients worldwide. Unfortunately, existing and many promising new chemotherapeutics can cause deleterious, off-target side effects in normal tissue and organ systems. The central and peripheral nervous systems are widely recognized as frequent off-target effectors of anticancer drugs which can produce persistent neurological and neuropsychiatric symptoms collectively termed "chemobrain".
View Article and Find Full Text PDFAtypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance.
View Article and Find Full Text PDFAstronauts on interplanetary missions - such as to Mars - will be exposed to space radiation, a spectrum of highly-charged, fast-moving particles that includes Fe and Si. Earth-based preclinical studies show space radiation decreases rodent performance in low- and some high-level cognitive tasks. Given astronaut use of touchscreen platforms during training and space flight and given the ability of rodent touchscreen tasks to assess functional integrity of brain circuits and multiple cognitive domains in a non-aversive way, here we exposed 6-month-old C57BL/6J male mice to whole-body space radiation and subsequently assessed them on a touchscreen battery.
View Article and Find Full Text PDFDentate gyrus adult neurogenesis is implicated in the formation of hippocampal-dependent contextual associations. However, the role of adult neurogenesis during reward-based context-dependent paradigms-such as conditioned place preference (CPP)-is understudied. Therefore, we used image-guided, hippocampal-targeted X-ray irradiation (IG-IR) and morphine CPP to explore whether dentate gyrus adult neurogenesis plays a role in reward memories created in adult C57BL/6J male mice.
View Article and Find Full Text PDFRecent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability.
View Article and Find Full Text PDFAdult neurogenesis persists in the rodent dentate gyrus and is stimulated by chronic treatment with conventional antidepressants through BDNF/TrkB signaling. Ketamine in low doses produces both rapid and sustained antidepressant effects in patients. Previous studies have shed light on post-transcriptional synaptic NMDAR mediated mechanisms underlying the acute effect, but how ketamine acts at the cellular level to sustain this anti-depressive function for prolonged periods remains unclear.
View Article and Find Full Text PDFUnlabelled: Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors.
View Article and Find Full Text PDFGenetic perturbations of the transcription factor () are causative for severe forms of autism spectrum disorder that are often comorbid with intellectual disability. Recent work has begun to reveal an important role for FoxP1 in brain development, but the brain-region-specific contributions of Foxp1 to autism and intellectual disability phenotypes have yet to be determined fully. Here, we describe conditional knock-out () male and female mice with loss of Foxp1 in the pyramidal neurons of the neocortex and the CA1/CA2 subfields of the hippocampus.
View Article and Find Full Text PDFWhile several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TM) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures.
View Article and Find Full Text PDFSequencing studies have implicated haploinsufficiency of , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al.
View Article and Find Full Text PDFBackground: A traumatic brain injury (TBI) event is a devastating injury to the brain that may result in heightened inflammation, neurodegeneration, and subsequent cognitive and mood deficits. TBI victims with co-morbidities such as heart disease, diabetes, or obesity may be more vulnerable to the secondary brain injury that follows the initial insult. Compared to lean individuals, obese subjects tend to have worse clinical outcomes and higher mortality rates after trauma.
View Article and Find Full Text PDFThe biological underpinnings and the pathological lesions of psychiatric disorders are centuries-old questions that have yet to be understood. Recent studies suggest that schizophrenia and related disorders likely have their origins in perturbed neurodevelopment and can result from a large number of common genetic variants or multiple, individually rare genetic alterations. It is thus conceivable that key neurodevelopmental pathways underline the various genetic changes and the still unknown pathological lesions in schizophrenia.
View Article and Find Full Text PDFSynapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms.
View Article and Find Full Text PDFThe neuronal ceroid lipofuscinoses (NCLs) are a group of related hereditary lysosomal storage disorders characterized by progressive loss of neurons in the central nervous system resulting in dementia, loss of motor skills, seizures and blindness. A characteristic intralysosomal accumulation of autofluorescent storage material occurs in the brain and other tissues. Three major forms and nearly a dozen minor forms of NCL are recognized.
View Article and Find Full Text PDFAcute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency.
View Article and Find Full Text PDFCA1 hippocampal N-methyl-d-aspartate-receptors (NMDARs) are necessary for contextually related learning and memory processes. Extinction, a form of learning, has been shown to require intact hippocampal NMDAR signalling. Renewal of fear expression can occur after fear extinction training, when the extinguished fear stimulus is presented in an environmental context different from the training context and thus, renewal is dependent on contextual memory.
View Article and Find Full Text PDFAddiction has been proposed to emerge from associations between the drug and the reward-associated contexts. This associative learning has a cellular correlate, as there are more cFos+ neurons in the hippocampal dentate gyrus (DG) after psychostimulant conditioned place preference (CPP) versus saline controls. However, it is unknown whether morphine CPP leads to a similar DG activation, or whether DG activation is due to locomotion, handling, pharmacological effects, or-as data from contextual fear learning suggests-exposure to the drug-associated context.
View Article and Find Full Text PDFRepeated cocaine exposure causes persistent, maladaptive alterations in brain and behavior, and hope for effective therapeutics lies in understanding these processes. We describe here an essential role for fragile X mental retardation protein (FMRP), an RNA-binding protein and regulator of dendritic protein synthesis, in cocaine conditioned place preference, behavioral sensitization, and motor stereotypy. Cocaine reward deficits in FMRP-deficient mice stem from elevated mGluR5 (or GRM5) function, similar to a subset of fragile X symptoms, and do not extend to natural reward.
View Article and Find Full Text PDFMultiple candidate genes have been identified for autism spectrum disorders. While some of these genes reach genome-wide significance, others, such as the R451C point mutation in the synaptic cell adhesion molecule neuroligin-3, appear to be rare. Interestingly, two brothers with the same R451C point mutation in neuroligin-3 present clinically on seemingly disparate sides of the autism spectrum.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common form of inherited mental retardation and the leading cause of autism. FXS is caused by mutation in a single gene, FMR1, which encodes an RNA-binding protein FMRP. FMRP is highly expressed in neurons and is hypothesized to have a role in synaptic structure, function, and plasticity by regulating mRNAs that encode pre- and post-synaptic proteins.
View Article and Find Full Text PDF