The membrane insertase YidC, is an essential bacterial component and functions in the folding and insertion of many membrane proteins during their biogenesis. It is a multispanning protein in the inner (cytoplasmic) membrane of Escherichia coli that binds its substrates in the "greasy slide" through hydrophobic interaction. The hydrophilic part of the substrate transiently localizes in the groove of YidC before it is translocated into the periplasm.
View Article and Find Full Text PDFIn 1971, Blobel proposed the first statement of the Signal Hypothesis which suggested that proteins have amino-terminal sequences that dictate their export and localization in the cell. A cytosolic binding factor was predicted, and later the protein conducting channel was discovered that was proposed in 1975 to align with the large ribosomal tunnel. The 1975 Signal Hypothesis also predicted that proteins targeted to different intracellular membranes would possess distinct signals and integral membrane proteins contained uncleaved signal sequences which initiate translocation of the polypeptide chain.
View Article and Find Full Text PDFEnzymes and whole cells serve as the active biological entities in a myriad of applications including bioprocesses, bioanalytics, and bioelectronics. Conserving the natural activity of these functional biological entities during their prolonged use is one of the major goals for validating their practical applications. Silk fibroin (SF) has emerged as a biocompatible material to interface with enzymes as well as whole cells.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2021
The YidC insertase of Escherichia coli inserts membrane proteins with small periplasmic loops (~20 residues). However, it has difficulty transporting loops that contain positively charged residues compared to negatively charged residues and, as a result, increasing the positive charge has an increased requirement for the Sec machinery as compared to negatively charged loops (Zhu et al., 2013; Soman et al.
View Article and Find Full Text PDFCombined power generation and waste degradation through microbial fuel cell (MFC) technology is emerging as an attractive solution for controlling pollution in water bodies. Cyanobacteria as fuel cell catalysts for such shared energy activities are not well studied even though these possess robust metabolic systems supporting exo-electrogenicity, biodegradation of toxic compounds, and their survival under wide environmental conditions. Herein, a dual chambered (50 ml each) MFC assembled with Synechococcus sp.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2018
The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols.
View Article and Find Full Text PDFThe activating role of different polymer thin films coated over polystyrene support on the Synechococcus sp. biofilm growth was examined concurrently by measuring biofilm florescence using a dye and by measuring cell density in the isolated biofilm. Compared to blank (no coating), the increase in biofilm formation (%) on silk, chitosan, silk-chitosan (3:2) blend, polyaniline, osmium, and Nafion films were 27.
View Article and Find Full Text PDF