Publications by authors named "Sharawan Yadav"

The common fig bears a unique closed inflorescence structure, the syconium, composed of small individual drupelets that develop from the ovaries, which are enclosed in a succulent receptacle of vegetative origin. The fig ripening process is traditionally classified as climacteric; however, recent studies have suggested that distinct mechanisms exist in its reproductive and non-reproductive parts. We analysed ABA and ethylene production, and expression of ABA-metabolism, ethylene-biosynthesis, MADS-box, NAC, and ethylene response-factor genes in inflorescences and receptacles of on-tree fruit treated with ABA, ethephon, fluridone, and nordihydroguaiaretic acid (NDGA).

View Article and Find Full Text PDF

Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated.

View Article and Find Full Text PDF

Nitric oxide (NO) is an important inorganic molecule of the biological system owing to diverse physiological implications. NO is synthesised from a semi-essential amino acid L-arginine. NO biosynthesis is catalysed by a family of enzymes referred to as nitric oxide synthases (NOSs).

View Article and Find Full Text PDF

Rodent models and molecular tools, mainly omics and RNA interference, have been rigorously used to decode the intangible etiology and pathogenesis of Parkinson's disease (PD). Although convention of contemporary molecular techniques and multiple rodent models paved imperative leads in deciphering the role of putative causative factors and sequential events leading to PD, complete and clear-cut mechanisms of pathogenesis are still hard to pin down. The current article reviews the implications and pros and cons of rodent models and molecular tools in understanding the molecular and cellular bases of PD pathogenesis based on the existing literature.

View Article and Find Full Text PDF

A strong association between polymorphisms of the cytochrome P450 (CYP/Cyp) 2D6 gene and risk to Parkinson's disease (PD) is well established. The present study investigated the neuroprotective potential of Cyp2d22, a mouse ortholog of human CYP2D6, in maneb- and paraquat-induced parkinsonism and the mechanisms involved therein along with the effects of resveratrol on various parameters associated with Cyp2d22-mediated neuroprotection. The animals were treated intraperitoneally with resveratrol (10mg/kg, daily) and paraquat (10mg/kg) alone or in combination with maneb (30 mg/kg), twice a week, for 9 weeks, along with their respective controls.

View Article and Find Full Text PDF

Maneb and paraquat are known to induce Parkinson's disease (PD) phenotype, however, caffeine offers neuroprotection. Nitric oxide (NO) acts an important mediator in PD phenotype and tyrosine kinase (TK), nuclear factor kappa B (NF-kB), p38 mitogen activated protein kinase (p38 MAPK) are known to regulate its production. The present study aimed to elucidate the role of caffeine in the regulation of NO production and microglial activation and their subsequent contribution in dopaminergic neuroprotection.

View Article and Find Full Text PDF

The study aimed to investigate the involvement of nitric oxide (NO) in maneb (MB)- and paraquat (PQ)-induced Parkinson's disease (PD) phenotype in mouse and its subsequent contribution to lipid peroxidation. Animals were treated intraperitoneally with or without MB and PQ, twice a week for 3, 6 and 9 weeks. In some sets of experiments (9 weeks treated groups), the animals were treated intraperitoneally with or without inducible nitric oxide synthase (iNOS) inhibitor-aminoguanidine, tyrosine kinase inhibitor-genistein, nuclear factor-kappa B (NF-kB) inhibitor-pyrrolidine dithiocarbamate (PDTC) or p38 mitogen activated protein kinase (MAPK) inhibitor-SB202190.

View Article and Find Full Text PDF

Cytochrome P450 1B1 (CYP1B1) and catechol-O-methyltransferase (COMT) enzymes play critical roles in estrogen metabolism. Alterations in the catalytic activity of CYP1B1 and COMT enzymes have been found associated with altered breast cancer risk in postmenopausal women in many populations. The substitution of leucine (Leu) to valine (Val) at codon 432 increases the catalytic activity of CYP1B1, however, substitution of Val to methionine (Met) at codon 158 decreases the catalytic activity of COMT.

View Article and Find Full Text PDF