Dielectric Modulated Field-Effect Transistors (DMFETs) have emerged as promising candidates for label-free bioanalyte detection. However, the inherent short-channel effects in conventional DMFETs increase their static power dissipation significantly and limit their scalability and sensitivity. Therefore, FETs based on alternate conduction mechanism such as tunneling (TFETs), which are immune to the short-channel effects, appear to be a lucrative alternative to the MOSFETs for biosensing application.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
January 2023
Dielectric modulated (DM) field-effect transistors (FET) have gained significant popularity for label-free detection of biomolecules. However, the inherent short channel effects limit their sensitivity, scalability and energy-efficiency. Therefore, to realize the true potential of the DMFET based biosensors, in this work, we propose a highly scalable, extremely sensitive and energy-efficient DM nanotube tunnel FET (NT-TFET) biosensor for label-free detection of biomolecules by modifying the structure of the conventional NT-TFET.
View Article and Find Full Text PDF