Minimally invasive procedures for endovascular interventions involve manual navigation of a guidewire. Endovascular interventions encompassing highly tortuous vessels would benefit from guidewires which exhibit higher dexterity. This paper introduces a version of the COAST (COaxially Aligned STeerable) guidewire system capable of exhibiting higher dexterity.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
May 2023
Atherosclerosis is a medical condition that causes buildup of plaque in the blood vessels and narrowing of the arteries. Surgeons often treat this condition through angioplasty with catheter placements. Continuum guidewire robots offer significant advantages for catheter placements due to their dexterity.
View Article and Find Full Text PDFCardiovascular diseases are the leading cause of death globally and surgical treatments for these often begin with the manual placement of a long compliant wire, called a guidewire, through different vasculature. To improve procedure outcomes and reduce radiation exposure, we propose steps towards a fully automated approach for steerable guidewire navigation within vessels. In this paper, we utilize fluoroscopic images to fully reconstruct 3-D printed phantom vasculature models by using a shape-from-silhouette algorithm.
View Article and Find Full Text PDFIEEE Trans Med Robot Bionics
November 2021
Mitral regurgitation (MR) is a condition caused by a deformity in the mitral valve leading to the backflow of blood into the left atrium. MR can be treated through a minimally invasive procedure and our lab is currently developing a robot that could potentially be used to treat MR. The robot would carry a clip that latches onto the valve's leaflets and closes them to minimize leakage.
View Article and Find Full Text PDF