Botulinum neurotoxins (BoNTs) are the most toxic substances known to mankind and are the causative agents of the neuroparalytic disease botulism. Their ease of production and extreme toxicity have caused these neurotoxins to be classified as Tier 1 bioterrorist threat agents and have led to a sustained effort to develop countermeasures to treat intoxication in case of a bioterrorist attack. While timely administration of an approved antitoxin is effective in reducing the severity of botulism, reversing intoxication requires different strategies.
View Article and Find Full Text PDFSulfamethoxazole (SMX) and trimethoprim (TMP) individually and a combination known as cotrimoxazole (SMX-TMP) are widely used for the treatment of protozoan and bacterial infections. SMX-TMP is also one of the widely used antibiotics administered orally in neonates, along with gentamicin injection, for treating pneumonia and sepsis by home-based healthcare providers in Asian countries. Although the use of this drug has successfully reduced neonate mortality, there is a concern for it causing neurotoxicity.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) comprise a family of neurotoxic proteins synthesized by anaerobic bacteria of the genus Clostridium. Each neurotoxin consists of two polypeptide chains: a 100kDa heavy chain, responsible for binding and internalization into the nerve terminal of cholinergic motoneurons and a 50kDa light chain that mediates cleavage of specific synaptic proteins in the host nerve terminal. Exposure to BoNT leads to cessation of voltage- and Ca(2+)-dependent acetylcholine (ACh) release, resulting in flaccid paralysis which may be protracted and potentially fatal.
View Article and Find Full Text PDFElectrophysiological and ultrastructural studies were performed on phrenic nerve-hemidiaphragm preparations isolated from wild-type and acetylcholinesterase (AChE) knockout (KO) mice to determine the compensatory mechanisms manifested by the neuromuscular junction to excess acetylcholine (ACh). The diaphragm was selected since it is the primary muscle of respiration, and it must adapt to allow for survival of the organism in the absence of AChE. Nerve-elicited muscle contractions, miniature endplate potentials (MEPPs) and evoked endplate potentials (EPPs) were recorded by conventional electrophysiological techniques from phrenic nerve-hemidiaphragm preparations isolated from 1.
View Article and Find Full Text PDFPyridostigmine bromide (PB) was approved by the U.S. Food and Drug Administration (FDA) in 2003 as a pretreatment in humans against the lethal effects of the irreversible nerve agent soman (GD).
View Article and Find Full Text PDFJ Appl Toxicol
October 2005
Palytoxin (PTX), isolated from a zoanthid of the genus Palythoa, is the most potent marine toxin known. Intoxication by PTX leads to vasoconstriction, hemorrhage, ataxia, muscle weakness, ventricular fibrillation, pulmonary hypertension, ischemia and death. In this study, clonal A7r5 rat aortic smooth muscle cells were used to study the mechanism of PTX-mediated cytotoxicity.
View Article and Find Full Text PDFNerve-evoked contractions were studied in vitro in phrenic nerve-hemidiaphragm preparations from strain 129X1 acetylcholinesterase knockout (AChE-/-) mice and their wild-type littermates (AChE+/+). The AChE-/- mice fail to express AChE but have normal levels of butyrylcholinesterase (BChE) and can survive into adulthood. Twitch tensions elicited in diaphragms of AChE-/- mice by single supramaximal stimuli had larger amplitudes and slower rise and decay times than did those in wild-type animals.
View Article and Find Full Text PDF