Herein, we report the synthesis and characterization of a new class of hybrid Wells-Dawson polyoxometalate (POM) containing a diphosphoryl group (P O X) of the general formula [P W O (P O X)] (X=O, NH, or CR R ). Modifying the bridging unit X was found to impact the redox potentials of the POM. The ease with which a range of α-functionalized diphosphonic acids (X=CR R ) can be prepared provides possibilities to access diverse functionalized hybrid POMs.
View Article and Find Full Text PDFThe mixing of [V O ] decavanadate anions with a dicationic gemini surfactant (gem) leads to the spontaneous self-assembly of surfactant-templated nanostructured arrays of decavanadate clusters. Calcination of the material under air yields highly crystalline, sponge-like V O (gem-V O ). In contrast, calcination of the amorphous tetrabutylammonium decavanadate allows isolation of a more agglomerated V O consisting of very small crystallites (TBA-V O ).
View Article and Find Full Text PDFThis review provides a comprehensive overview of recent advances in the supramolecular organisation and hierarchical self-assembly of organo-functionalised hybrid polyoxometalates (hereafter referred to as hybrid POMs), and their emerging role as multi-functional building blocks in the construction of new nanomaterials. Polyoxometalates have long been studied as a fascinating outgrowth of traditional metal-oxide chemistry, where the unusual position they occupy between individual metal oxoanions and solid-state bulk oxides imbues them with a range of attractive properties ( solubility, high structural modularity and tuneable properties/reactivity). Specifically, the capacity for POMs to be covalently coupled to an effectively limitless range of organic moieties has opened exciting new avenues in their rational design, while the combination of distinct organic and inorganic components facilitates the formation of complex molecular architectures and the emergence of new, unique functionalities.
View Article and Find Full Text PDF