Publications by authors named "Sharad P Kale"

In this study, a multi-metal-tolerant natural bacterial isolate strain KDM3 from an industrial effluent in Mumbai, India, showed high cadmium (Cd) tolerance. grew in the presence of more than 100 ppm (880 μM) Cd (LD = 100 ppm) and accumulated Cd intracellularly. Following Cd exposure, a comparative proteome analysis revealed molecular mechanisms underlying Cd tolerance.

View Article and Find Full Text PDF

Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons.

View Article and Find Full Text PDF

Lindane (γ-hexachlorocyclohexane), a persistent organo-chlorine insecticide widely used in developing countries, has a negative effect as a polluting agent of soil and surface waters. Plants can be used for remediation of organic pollutants and their efficiency can be enhanced by introduction of heterologous genes. Mammalian cytochrome P4502E1 (CYP2E1), an important monooxygenase is involved in the degradation of a wide range of xenobiotics including environmental pollutants/herbicides and pesticides.

View Article and Find Full Text PDF

We have studied the functions of the Trichoderma virens TmkB, a homologue of the yeast cell-wall integrity MAP kinase Slt2, using gene knockout. The functions of TmkB were compared to those of the pathogenicity MAP kinase homologue (TmkA). Like the tmkA loss-of-function mutants, tmkB mutants exhibited reduced radial growth and constitutive conidiation in dark as well as in liquid shake cultures.

View Article and Find Full Text PDF

An adenylate-cyclase-encoding gene, tac1, of Trichoderma virens, a soil fungus used in the biocontrol of plant pathogens, has been cloned and sequenced. The tac1 ORF spanned 7032 bp, encoding a protein of 2153 aa, which shared an identity of 65 % with the adenylate cyclase of Colletotrichum lagenarium. Deletion of tac1, through double-crossover homologous recombination, lowered the intracellular cAMP levels to below the detection limit.

View Article and Find Full Text PDF