The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried.
View Article and Find Full Text PDFNanocrystals have emerged as a potential formulation strategy to eliminate the bioavailability-related problems by enhancing the initial dissolution rate and moderately super-saturating the thermodynamic solubility. This review contains an in-depth knowledge of, the processing method for formulation, an accurate quantitative assessment of the solubility and dissolution rates and their correlation to observe pharmacokinetic data. Poor aqueous solubility is considered the major hurdle in the development of pharmaceutical compounds.
View Article and Find Full Text PDFThe quantitative determination of solubility and the initial dissolution rate enhancement of crystalline nanoparticles were critically investigated using a separation-based approach (ultracentrifugation and filtration). Four poorly soluble model compounds (griseofulvin, celecoxib, compound-X, and fenofibrate) were used in this investigation. The effect of the stabilizer concentration on the solubility of the unmilled compound was determined first to quantify its impact on the solubility and used for comparing solubility enhancement upon nanosizing.
View Article and Find Full Text PDFA method is described for screening compounds that inhibit crystallization in solution to enable more accurate measurement of amorphous drug solubility. Three polymers [polyvinylpyrrolidone, hydroxypropyl methylcellulose, and hydroxypropyl methylcellulose acetate succinate (HPMCAS)] were screened for their ability to inhibit the crystallization of neat amorphous drugs during measurement of solubility of the amorphous form in water. Among the polymers evaluated, HPMCAS was found to be most promising.
View Article and Find Full Text PDFPurpose: To quantitatively assess the solubility advantage of amorphous forms of nine insoluble drugs with a wide range of physico-chemical properties utilizing a previously reported thermodynamic approach.
Methods: Thermal properties of amorphous and crystalline forms of drugs were measured using modulated differential calorimetry. Equilibrium moisture sorption uptake by amorphous drugs was measured by a gravimetric moisture sorption analyzer, and ionization constants were determined from the pH-solubility profiles.
Measurement of drug solubility is one of the key elements of active pharmaceutical ingredient (API) characterization during the drug discovery and development process. This report is a critical review of experimental methods reported in the literature for the measurement of aqueous solubility of amorphous, partially crystalline and crystalline organic compounds. A summary of high-throughput automated methods used in early drug discovery research is also provided in this report.
View Article and Find Full Text PDFIn recent years there has been growing interest in advancing amorphous pharmaceuticals as an approach for achieving adequate solubility. Due to difficulties in the experimental measurement of solubility, a reliable estimate of the solubility enhancement ratio of an amorphous form of a drug relative to its crystalline counterpart would be highly useful. We have developed a rigorous thermodynamic approach to estimate enhancement in solubility that can be achieved by conversion of a crystalline form to the amorphous form.
View Article and Find Full Text PDF