As a van der Waals (vdW) layered semiconductor material, lead iodide (PbI) possessing a direct bandgap with strong photoluminescence emission in visible range has gained wide attention in applications of photonic and optoelectronic devices. Here, upconversion photoluminescence (UPL) in exfoliated PbI flakes is demonstrated at room temperature and elevated temperatures. The linear power dependence of UPL emission with 532 nm excitation suggests the one-photon involved multiphonon-assisted UPL emission process, which is revealed by the temperature-dependent UPL emission measurement.
View Article and Find Full Text PDFRecent advances in high-resolution biomedical imaging have improved cancer diagnosis, focusing on morphological, electrical, and biochemical properties of cells and tissues, scaling from cell clusters down to the molecular level. Multiscale imaging revealed high complexity that requires advanced data processing methods of multifractal analysis. We performed label-free multiscale imaging of surface potential variations in human ovarian cancer cells using Kelvin probe force microscopy (KPFM).
View Article and Find Full Text PDFTwo-dimensional heterostructures have recently gained broad interest due to potential applications in optoelectronic devices. Their reduced dimensionality leads to novel physical effects beyond conventional bulk electronics. However, the optical properties of the 2D lateral heterojunctions have not been completely characterized due to the limited spatial resolution, requiring nano-optical techniques beyond the diffraction limit.
View Article and Find Full Text PDFUltraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides provide flexible platforms for nanophotonic engineering due to their exceptional mechanical and optoelectronic properties. For example, continuous band gap tunability has been achieved in 2D TMDs by elastic strain engineering. Localized elastic deformations in nanobubbles behave as "artificial atoms" with a spatially varying band gap resulting in funnelling of excitons and photocarriers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
Two-dimensional (2D) semiconducting materials have promising applications in flexible optoelectronics, nanophotonics, and sensing based on the broad tunability of their optical and electronic properties. 2D nanobubbles form exciton funnels due to localized strain that can be used as local emitters for information processing. Their nanoscale optical characterization requires the use of near-field scanning probe microscopy (SPM).
View Article and Find Full Text PDF2D heterostructures made of transition metal dichalcogenides (TMD) have emerged as potential building blocks for new-generation 2D electronics due to their interesting physical properties at the interfaces. The bandgap, work function, and optical constants are composition dependent, and the spectrum of applications can be expanded by producing alloy-based heterostructures. Herein, the successful synthesis of monolayer and bilayer lateral heterostructures, based on ternary alloys of MoS Se -WS Se , is reported by modifying the ratio of the source precursors; the bandgaps of both materials in the heterostructure are continuously tuned in the entire range of chalcogen compositions.
View Article and Find Full Text PDFChocolate bloom is an off-white coating on the surface of chocolate products due to the altered distribution of the ingredients. Bloom reduces the shelf-life of chocolate and affects its visual and tactile quality, all of which are serious concerns for chocolate manufacturers and consumers. The automated, rapid, and noninvasive point-of-care detection of chocolate bloom has been an essential but challenging problem.
View Article and Find Full Text PDFOptical spectroscopic imaging of biological systems has important applications in medical diagnosis, biochemistry, and image-guided surgery. Vibrational spectroscopy, such as Raman scattering, provides high chemical selectivity but is limited by weak signals and a large fluorescence background. Fluorescence imaging is often used by introducing specific dyes in biological systems to label different system parts and to increase the image contrast.
View Article and Find Full Text PDF