Publications by authors named "Shaquib Rahman Ansari"

Magnetic hyperthermia holds significant therapeutic potential, yet its clinical adoption faces challenges. One obstacle is the large-scale synthesis of high-quality superparamagnetic iron oxide nanoparticles (SPIONs) required for inducing hyperthermia. Robust and scalable manufacturing would ensure control over the key quality attributes of SPIONs, and facilitate clinical translation and regulatory approval.

View Article and Find Full Text PDF

Chronic inflammatory conditions are among the most prevalent diseases worldwide. Several debilitating diseases such as atherosclerosis, inflammatory bowel disease, rheumatoid arthritis, and Alzheimer's are linked to chronic inflammation. These conditions often develop into complex and fatal conditions, making early detection and treatment of chronic inflammation crucial.

View Article and Find Full Text PDF

Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have a dominant role in many subfields of biomedicine. Owing to their peculiar properties, they can be employed for magnetic separation, drug delivery, diagnostics, and hyperthermia treatments. However, these magnetic nanoparticles (NPs) suffer from low unit magnetization due to size constraints (up to 20-30 nm) to exhibit superparamagnetic character.

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) generate heat upon exposure to an alternating magnetic field (AMF), which has been studied for hyperthermia treatment and triggered drug release. This study introduces a novel application of magnetic hyperthermia to induce amorphization of a poorly aqueous soluble drug, celecoxib, in situ in tablets for oral administration. Poor aqueous solubility of many drug candidates is a major hurdle in oral drug development.

View Article and Find Full Text PDF

Designing effective and safe tuberculosis (TB) subunit vaccines for inhalation requires identification of appropriate antigens and adjuvants and definition of the specific areas to target in the lungs. Magnetic resonance imaging (MRI) enables high spatial resolution, but real-time anatomical and functional MRI of lungs is challenging. Here, we describe the design of a novel gadoteridol-loaded cationic adjuvant formulation 01 (CAF01) for MRI-guided vaccine delivery of the clinically tested TB subunit vaccine candidate H56/CAF01.

View Article and Find Full Text PDF