Publications by authors named "Shaozhong Dong"

The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1.

View Article and Find Full Text PDF

Objective: To determine the potent and broad neutralizing monoclonal antibody (mAb) against enterovirus A (EV-A) in vitro and in vivo induced by enterovirus A71(EVA71) and coxsackievirus 16 (CVA16) co-immunization.

Methods: The mAb was Generated by co-immunization with EVA71 and CVA16 through hybridomas technology. The characteristics and neutralizing ability of mAb were analysed in vitro and in mice.

View Article and Find Full Text PDF

Enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16) are the major pathogens responsible for hand, foot and mouth disease (HFMD), but the mechanism by which these viruses cause disease remains unclear. In this study, we used transcriptome sequencing technology to investigate changes in the transcriptome profiles after infection with EV-A71 and CV-A16 in human bronchial epithelial (16HBE) cells. Using systematic bioinformatics analysis, we then searched for useful clues regarding the pathogenesis of HFMD.

View Article and Find Full Text PDF
Article Synopsis
  • - A new liver cell line from the Chinese tree shrew, called ITH6.1, was created to study human diseases.
  • - ITH6.1 cells can be infected by enterovirus 71 (EV71) but show resistance to hepatitis C virus (HCV) despite expressing HCV entry factors.
  • - The transformation of primary hepatocytes to the immortalized ITH6.1 line involved changes in gene expression, with DNA replication and cell cycle genes increasing, while metabolic and hepatocyte function-related genes decreased.
View Article and Find Full Text PDF

Efficient, accurate and convenient foreign-gene insertion strategies are crucial for the high-throughput and rapid construction of large DNA viral vectors, but relatively inefficient and labour-intensive methods have limited the application of recombinant viruses. In this study, we applied the nonhomologous insertion (NHI) strategy, which is based on the nonhomologous end joining (NHEJ) repair pathway. Compared to the currently used homologous recombination (HR) strategy, we obtained a higher efficiency of foreign-gene insertion into the herpes simplex virus (HSV) genome that reached 45 % after optimization.

View Article and Find Full Text PDF

The Developing Countries Vaccine Manufacturers Network (DCVMN) convened vaccine manufacturing experts and leaders from local and global public health organizations for its 19th Annual General Meeting. Lectures and panel discussions centered on international cooperation for better access to vaccines, and partnerships in areas ranging from vaccine research and process development, to clinical studies, regulatory, supply chain and emergency preparedness and response. Global vaccine market trends and changes that will impact vaccine financing and procurement methods were discussed as well as capital sources, including funding, for the development of new or improved vaccines.

View Article and Find Full Text PDF

Hand, foot and mouth disease (HFMD) is mainly caused by human enterovirus 71 (EV71) and coxsackievirus A16 (CA16), which circulate alternatively or together in epidemic areas. Although the two viruses exhibit genetic homology, their clinical manifestations have some discrepancies. However, the factors underlying these differences remain unclear.

View Article and Find Full Text PDF

Objectives: Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) remain the major pathogens in hand, foot, and mouth disease (HFMD) cases, but the mechanisms of the different pathogeneses that follow EV71 and CA16 infection remain largely unknown.

Methods: Herein, we utilized microRNA (miRNA) deep sequencing to investigate the roles of novel differentially expressed miRNAs in peripheral blood mononuclear cells (PBMCs) infected with EV71 and CA16.

Results: The results identified 13 novel differentially expressed miRNAs in each group.

View Article and Find Full Text PDF

Coxsackievirus A16 (CA16) is a member of the Picornaviridae family and causes mild and self-limiting hand, foot, and mouth disease (HFMD) in infants and young children. CA16 infection can also progress to central nervous system (CNS) complications; however, the underlying mechanism by which CA16 penetrates the blood-brain barrier (BBB) and then causes CNS damage remains unclear. This study aimed to explore the mechanism of CA16 neurotropic tropism by establishing an in vitro BBB model with CA16 infection and an in vivo CA16 rhesus monkey infant infection model.

View Article and Find Full Text PDF

Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are two major etiologic agents associated with hand, foot, and mouth disease (HFMD) worldwide. Despite that they both belong to the Enterovirus genus of the Picornaviridae family, there are many differences in the infection process of these viruses. However, the underlying mechanisms have not been elucidated.

View Article and Find Full Text PDF

We aimed to express and purify three rabies virus glycoproteins with different tags and sizes. After analyzing their binding function, we wish to obtain a rabies virus glycoprotein with higher affinity and ability to specifically bind memory B cells. Experiments were carried out to express full length, as well as the ectodomain RVG by gene engineering method.

View Article and Find Full Text PDF

Tree shrews (Tupaia belangeri) are small squirrel-like mammals closely related to primates. Due to their susceptibility to several human viruses, tree shrews have been proposed as potential animal models for the study of human viral infections. However, there are no standardized assays currently available for the detection of tree shrew-specific interferon (IFN)-γ, a major cytokine secreted during the antiviral immune response.

View Article and Find Full Text PDF

Interactions between hepatitis C virus (HCV) and lipoproteins in humans play an important role in the efficient establishment of chronic infection. Apolipoprotein E (ApoE) on the HCV envelope mediates virus attachment to host cells as well as immune evasion. This interaction is thought to occur in hepatocytes, as ApoE plays dual functions in HCV assembly and maturation as well as cell attachment.

View Article and Find Full Text PDF

Recently, we reported that the frequency of hepatitis C virus (HCV) genotypes and subtypes has rapidly changed among intravenous drug users (IDUs) in Yunnan Province over the last 5 years; this is especially true for subtype 6a which has increased in frequency from 5 to 15%. Here, we assessed 120 HCV-positive plasma samples from the general population (GP). HCV NS5B fragments were amplified and sequenced by PCR.

View Article and Find Full Text PDF

Background: Recently, high proportions (15.6%-98.7%) of intravenous drug users (IDUs) in China were found to be positive for hepatitis C virus (HCV).

View Article and Find Full Text PDF

Perineural invasion (PNI) is common in salivary adenoid cystic carcinoma (SACC). The aim of the present study was to explore the association of the Schwann-like cell differentiation with PNI in SACC. Twenty-eight cases of SACC and 10 cases of acinic cell carcinoma (ACA) were examined for the expression of the Schwann cell markers Leu-7 by immunohistochemical staining.

View Article and Find Full Text PDF

Coxsackie A virus is one of the major pathogens associated with hand, foot and mouth disease (HFMD). The etiological characteristics of Coxsackie A virus type 16 (CA16) are thought to correlate with the pathological process of its infection. Two CA16 strains that were isolated from a severe HFMD patient presented with different plaque forms.

View Article and Find Full Text PDF

Objective: to investigate the effect of RhoA on the metastasis of tongue squamous cell carcinoma Tca8113 cells in vitro.

Methods: a group of RhoA specific small interfering RNAs (siRNA) was constructed and confined by sequencing analysis. The siRNA of RhoA gene was transfected into human tongue squamous cell carcinoma Tca8113 cells line by Lipofectamine(TM) 2000.

View Article and Find Full Text PDF

The Warburg effect describes a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose even in the presence of oxygen. To better understand how tyrosine kinase signaling, which is commonly increased in tumors, regulates the Warburg effect, we performed phosphoproteomic studies. We found that oncogenic forms of fibroblast growth factor receptor type 1 inhibit the pyruvate kinase M2 (PKM2) isoform by direct phosphorylation of PKM2 tyrosine residue 105 (Y(105)).

View Article and Find Full Text PDF

Dysregulation of the receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) plays a pathogenic role in a number of human hematopoietic malignancies and solid tumors. These include t(4;14) multiple myeloma associated with ectopic expression of FGFR3 and t(4;12)(p16;p13) acute myeloid leukemia associated with expression of a constitutively activated fusion tyrosine kinase, TEL-FGFR3. We recently reported that FGFR3 directly tyrosine phosphorylates RSK2 at Y529, which consequently regulates RSK2 activation.

View Article and Find Full Text PDF

Serine/arginine (SR) protein-specific kinase (SRPK), a family of cell cycle-regulated protein kinases, phosphorylate SR domain-containing proteins in nuclear speckles and mediate the pre-mRNA splicing. However, the physiologic roles of this event in cell cycle are incompletely understood. Here, we show that SRPK2 binds and phosphorylates acinus, an SR protein essential for RNA splicing, and redistributes it from the nuclear speckles to the nucleoplasm, resulting in cyclin A1 but not A2 up-regulation.

View Article and Find Full Text PDF

The Ser/Thr kinase ribosomal S6 kinase 2 (RSK2) has been demonstrated to phosphorylate transcription factor CREB (cyclic AMP-responsive-binding protein) and histone H3 in response to mitogenic stimulation by epidermal growth factor (EGF). EGF activates the MEK/ERK pathway to activate RSK2. We recently reported that receptor tyrosine kinase fibroblast growth factor receptor 3 (FGFR3) directly tyrosine phosphorylates RSK2 at Tyr-529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2 (Kang, S.

View Article and Find Full Text PDF

To better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells.

View Article and Find Full Text PDF

Nucleophosmin/B23 is a major multifunctional nucleolar phosphoprotein that plays a critical role in ribosome biogenesis and cell proliferation. Arf tumor suppressor binds B23 and enhances its sumoylation. However, the biological effects of this event remain unknown.

View Article and Find Full Text PDF

Studies about the proteins induced by interferon (IFN-)-alpha stimulation have provided some data on their mechanism of antiviral effect. These proteins were confirmed to contribute to antiviral functions. In this study, IFN-alpha stimulation of human fibroblasts was shown to induce the inhibition of S24 variant 2 (a structural component of the ribosomal small subunit) at the mRNA and protein levels, implying a possible antiviral mechanism for IFN-alpha in human fibroblasts.

View Article and Find Full Text PDF