Publications by authors named "Shaozhe Cheng"

2-methylisoborneol (2-MIB), a secondary metabolite produced by cyanobacteria, often causes a musty odour in water, threatening the safety of drinking water supplies. This study investigated the effects of the growth phases on the production of 2-MIB by Pseudanabaena. The effects of cell characteristics on the production and release of 2-MIB were also explored.

View Article and Find Full Text PDF

Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae.

View Article and Find Full Text PDF

The efficiency of mixotrophic microalgae in enhancing the recovery of waste nutrients has been well established; however, the recovery rate is crucial in meeting the needs of field applications. This study evaluated the impact of media characteristics on nutrient recovery under mixotrophic conditions. The mixotrophic N recovery rate with S.

View Article and Find Full Text PDF

Adhering to a partially defined plan requires an intentional commitment that curbs distracting desires conflicting with the planned course of action, enabling humans to act coherently over time. Two studies (N = 50, 27 girls, ages 5-6, Han Chinese, in Hangzhou, China, 2022.02-2022.

View Article and Find Full Text PDF

The human mind is a mosaic composed of multiple selves with conflicting desires. How can coherent actions emerge from such conflicts? Classical desire theory argues that rational action depends on maximizing the expected utilities evaluated by all desires. In contrast, intention theory suggests that humans regulate conflicting desires with an intentional commitment that constrains action planning towards a fixed goal.

View Article and Find Full Text PDF

Co-coagulation flotation (CCF) is a novel flotation technology that renders more efficient algal removal compared to traditional mechanical coagulation flotation (MCF) due to a short residence time (< 30 s) and fast rising behavior of algal flocs (> 250 m·h). This study compared the algal removal performance using continuous CCF and MCF using water samples taken from Lake Dianchi with severe Microcystis aeruginosa blooms. Removal efficiency, dosage of coagulant/flocculant, rising velocity and structural characteristics of the resulting flocs in the two processes were systematically compared.

View Article and Find Full Text PDF

Harvesting algal biomass reduces nutrient loading in eutrophicated lakes and the protein-rich microalgal biomass could be recycled as feedstocks of feed and fertilizer. Due to the complexity of algogenic organic matter (AOM), the key components and functional groups in AOM that inhibit coagulation-based microalgal harvesting have not been disclosed thus far. This study quantitatively analysed the responsive compositions and functional groups of AOM involved in the dissolved air flotation (DAF) harvesting of M.

View Article and Find Full Text PDF

Foam flotation is an economical and efficient technology for microalgae harvesting. However, the mechanism of cell-collector-bubble interfacial interactions remains to be elucidated. There are two distinct hypotheses regarding the mechanism of microalgae foam flotation.

View Article and Find Full Text PDF

Coagulation-based separation has been increasingly applied to microalgal harvesting because of its competitive cost and high scalability. The characteristics of flocs formed during coagulation/flocculation are critical for efficient harvesting. However, few studies have been devoted to systematically investigating the structural characteristics of microalgal flocs and their influences on subsequent settling performance.

View Article and Find Full Text PDF

In this study, total eight distinct Miscanthus accessions were collected from the cadmium (Cd)-supplied soil pots, and mild alkali pretreatments (0.5%, 1% NaOH) were then performed to enhance biomass enzymatic saccharification. Due to large Cd accumulation, all Miscanthus accessions showed significantly reduced cellulose levels and features (CrI, DP) with much increased hemicellulose and pectin contents in the mature stems.

View Article and Find Full Text PDF