Publications by authors named "Shaozhang Hou"

Background: Diabetic nephropathy (DN) stands as the most prevalent chronic microvascular complication of diabetes mellitus. Approximately 50% of DN patients progress to end-stage renal disease, posing a substantial health burden.

Aim: To employ network pharmacology and molecular docking methods to predict the mechanism by which glycyrrhetinic acid (GA) treats DN, subsequently validating these predictions through experimental means.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Gan-song Yin is derived from the classic ancient prescription " Gan-song pill " for the treatment of wasting-thirst in Ningxia combined with the characteristic "fragrant medicine". It is clinically used for the treatment of early renal fibrosis caused by diabetic nephropathy. Previous studies have shown that it has a good effect and great potential in the prevention and treatment of diabetic nephropathy, but its mechanism research is still limited.

View Article and Find Full Text PDF

The study aimed to explore the key targets and molecular mechanisms of Dahuang-Tusizi drug pair (DTDP) in the treatment of diabetes nephropathy (DN) based on the GEO database by using network pharmacology combined with molecular docking and immune infiltration. The active components of the DTDP were screened using the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database. The differential genes of DN were retrieved from GEO databases.

View Article and Find Full Text PDF
Article Synopsis
  • Euphorbia factor L1 (EFL1) from the Euphorbia lathyris plant is toxic and causes intestinal irritation, but how it affects human cells is not well understood.
  • This study focused on EFL1's impact on Caco-2 colon cancer cells, revealing it decreased calcium levels, mitochondrial function, ATP content, and caused damage to tight junction proteins, impacting intestinal barrier integrity.
  • The findings suggest that EFL1's toxicity is linked to mitochondrial damage, disrupted energy metabolism, and down-regulation of essential proteins responsible for ion transport and cellular structure, leading to increased intestinal permeability.
View Article and Find Full Text PDF

Toxicokinetics plays a crucial role in the health risk assessments of xenobiotics. Classical compartmental models are limited in their ability to determine chemical concentrations in specific organs or tissues, particularly target organs or tissues, and their limited interspecific and exposure route extrapolation hinders satisfactory health risk assessment. In contrast, physiologically based toxicokinetic (PBTK) models quantitatively describe the absorption, distribution, metabolism, and excretion of chemicals across various exposure routes and doses in organisms, establishing correlations with toxic effects.

View Article and Find Full Text PDF

Objective: Diabetic nephropathy is one of the most important microvascular complications of diabetes, which mainly refers to glomerular capillary sclerosis. Podocytes are an important part of glomerular capillaries. Previous clinical and basic studies have shown that fibrosis is the main factor of diabetic nephropathy.

View Article and Find Full Text PDF

Co-immobilized bienzyme biocatalysts are attracting increasing interest in the field of wastewater treatment due to their widespread application. In this study, we successfully prepared a co-immobilized bienzyme biocatalyst by immobilizing horseradish peroxidase (HRP) and glucose oxidase (GOD) on dopamine (DA) modified cellulose (Ce)-chitosan (Cs) composite beads covalent binding, designated as Ce-Cs@DA/HRP-GOD beads, and found that the bienzyme biocatalyst had a good ability to catalytically degrade acridine in wastewater. SEM, EPR, FTIR, and XRD were used to characterise the structure and properties of the Ce-Cs@DA/HRP-GOD beads.

View Article and Find Full Text PDF

Background: Acute pancreatitis (AP) is one of the most common gastrointestinal disorders, which causes death with a high mortality rate of about 30%. The study aims to identify whether the nonalcoholic fatty liver disease (NAFLD)-derived lncRNA MALAT1 participates in the inflammation of pancreatic cell and its potential mechanism.

Methods: The NAFLD cell model was constructed by treating HepG2 cells with FFA.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells (MSCs) are promising remedies for various inflammatory disease including pulmonary fibrosis (PF). However, the properties of MSCs in PF pathological microenvironment remain unclear. In this study, the efficacy of autophagy in placental mesenchymal stem cells of fetal origin (fPMSCs) in either IL-1β treatment or BLM induced pulmonary fibrosis mice model was examined.

View Article and Find Full Text PDF

Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, . LBP is a promising anticancer drug, due to its high activity and low toxicity.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) have shown pivotal regulatory roles in tumorigenesis and progression. Our purpose was to analyze the role of circRNA La ribonucleoprotein 1B (circ-LARP1B; hsa_circ_0070934) in cutaneous squamous cell carcinoma (CSCC) progression and its associated mechanism. Cell viability, colony formation ability, migration, and invasion were analyzed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound healing assay, and transwell invasion assay.

View Article and Find Full Text PDF

Isocitrate dehydrogenase1 (IDH1) mutation is the most important genetic change in glioma. The most common IDH1 mutation results in the amino acid substitution of arginine 132 (Arg/R132), which is located at the active site of the enzyme. IDH1 Arg132His (R132H) mutation can reduce the proliferative rate of glioma cells.

View Article and Find Full Text PDF

We report on 16 children with ingestion of magnetic foreign bodies, who were identified by a medical record review of our hospital data for the time period between January, 2017 and May, 2018. Digestive tract wall was sandwiched in 13 (75%) children and 11 (74%) had gaptic intestinal perforation.

View Article and Find Full Text PDF

In previous studies, Lycium barbarum polysaccharides (LBP), a traditional Chinese medicine, can promote immature dendritic cells (DCs) to mature. However, the molecular mechanisms by which LBP works are not yet elucidated. Here, we found that LBP can induce DCs maturation, which is mainly characterized by the upregulation of MHCII and costimulatory molecules (CD80, CD86), and increase the production of IL-6 and IL-4.

View Article and Find Full Text PDF

BACKGROUND Diabetes aggravates cerebral ischemia/reperfusion (I/R) injury by increasing inflammatory reactions, but its specific mechanism is currently unclear. MATERIAL AND METHODS Diabetes was induced in mice with a high-fat diet combined with streptozotocin. These mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min, followed by reperfusion for 24-72 h and post-treatment glycyrrhizic acid (GA).

View Article and Find Full Text PDF

Follicular helper T (Tfh) cells regulate high-affinity antibody production. Some findings have indicated that Tfh cells could be differentiated into memory cells. Here we have investigated the effects of IFN-α, as an adjuvant, on the generation of memory Tfh cell and memory B cell responses.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Glycyrrhizic acid (GA) is an effective inhibitor of reactive oxygen species (ROS) production. We investigated the role of GA in the progression of renal injury in DN.

View Article and Find Full Text PDF

The aim of this study was to determine the beneficial effect of glycyrrhizic acid (GA) on type 2 diabetic nephropathy using renal tubular epithelial cell line (NRK-52E). The cells are divided into normal group (NG), high glucose group (HG), and treatment group (HG + GA). The methylthiazoletetrazolium (MTT) assay was used to detect the cell proliferation.

View Article and Find Full Text PDF

The present study investigated the neuroprotective potential of Diammonium Glycyrrhizinate (DG) in focal cerebral ischemic-reperfusion (IR) injury in mice. The middle cerebral artery occlusion (MCAO) model of the mouse was used. Mice were treated with DG (20mg/kg per day, intraperitoneal injection) or saline as control, from the beginning of the reperfusion to 7 days.

View Article and Find Full Text PDF