Publications by authors named "Shaoyong Ke"

This study investigates a novel antimicrobial peptide AtR905 derived from the endophytic fungus , which was successfully expressed in , purified, and characterized, and highlighted as a promising potential biocontrol agent against various plant pathogens. The results indicated AtR905 exhibited broad-spectrum antimicrobial activities against key pathogens such as and with very low minimal inhibitory concentrations (MICs). Stability tests confirmed that AtR905 retains its antimicrobial properties under varying thermal, pH, and UV conditions.

View Article and Find Full Text PDF

Two series of heterocyclic steroidal pyrazolo[1,5-a]pyrimidines derived from dehydroepiandrosterone (DHEA) and epiandrosterone (EPIA) were designed and synthesized, and these compounds were screened for their potential antiproliferation activities. The preliminary bioassay indicated that some of target compounds exhibited significantly good antiproliferation activities against human melanoma cell line (A875) and human hepatocellular carcinoma (Huh-7) cell lines compared with 5-fluorouracil (5-FU), and some of which present good antiproliferative activities as potential ALK inhibitors. The detailed analysis of structure-activity relationships (SARs) based on the inhibition activities, kinase assay, and molecular docking demonstrated that the antiproliferation activities of these steroidal pyrazolo[1,5-a]pyrimidine might be affected by the β-hydroxyl group of steroidal scaffold and the N atom of pyridine heterocycle.

View Article and Find Full Text PDF

Cyst nematodes are the most damaging species of plant-parasitic nematodes. They antagonize the colonization of beneficial microbial symbionts that are important for nutrient acquisition of plants. The molecular mechanism of the antagonism, however, remains elusive.

View Article and Find Full Text PDF

Herein, we present a novel method for the -arylation of amino acid esters using α-bromoacetaldehyde acetal and acetoacetate via an I-mediated metal-free benzannulation strategy, which disclosed the first synthetic application of -arylation of amino acids using nonaromatic building blocks. The synthesized -arylated amino acid derivatives were found to possess promising selective inhibition against human hepatocellular liver carcinoma cells, human melanoma cells, and human normal liver cells, with an IC value as low as 16.79 μg·mL.

View Article and Find Full Text PDF

Natural products are one of the main sources of drug and agrochemicals discovery. Biphenyls skeleton are ubiquitous structures in many classes of natural products, which indicate extensive biological activities. So, in order to investigate the potential applications for natural biphenyl derivatives, a series of novel carboxamide derivatives with diverse substituent patterns were designed and synthesized based on active pharmacophore from natural biphenyl lignans, and their antifungal activities against several typical plant pathogens belonging to oomycetes, ascomycete, deuteromycetes, and basidiomycetes were fully investigated.

View Article and Find Full Text PDF

Two series of novel steroidal[17,16-]pyrimidines derived from natural epiandrosterone and androsterone were designed and synthesized, and these compounds were screened for their potential anticancer activities. The preliminary bioassay indicated that some of these prepared compounds exhibited significantly good cytotoxic activities against human gastric cancer (SGC-7901), lung cancer (A549), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), epiandrosterone, and androsterone. Especially the respective pairs from epiandrosterone and androsterone showed significantly different inhibitory activities, and the possible configuration-activity relationships have also been summarized and discussed based on kinase assay and molecular docking, which indicated that the inhibition activities of these steroidal[17,16-]pyrimidines might obviously be affected by the configuration of the hydroxyl group in the part of the steroidal scaffold.

View Article and Find Full Text PDF

Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines.

View Article and Find Full Text PDF

Fungi have been used in the production of a wide range of biologically active metabolites, including potent herbicides. In the search for pesticides of natural origin, NBERC_28952, a fungal strain with herbicidal activity, was obtained. Chemical study of secondary metabolites from NBERC_28952 resulted in the isolation of three new asperugin analogues, named Aspersparin A-C (-), and a new azaphilone derivative, named Aspersparin D (), together with two known compounds, Asperugin B () and sydonic acid ().

View Article and Find Full Text PDF

Diarylamines are a class of important skeleton widely existing in drugs or natural products. To discover novel diarylamine analogues as potential drugs, two series of diamide and carboxamide derivatives containing diarylamine scaffold were designed, synthesized and evaluated for their potential cytotoxic activities. The bioassay results indicated that some of the obtained compounds (C5, C6, C7, C11) exhibited good cytotoxic effect on cancer cell lines (SGC-7901, A875, HepG2), especially, compound C11 present significantly selective proliferation inhibition activity on cancer and normal cell lines (MARC145).

View Article and Find Full Text PDF

Primary arylsulfonamide functional groups feature prominently in diverse pharmaceuticals. However, natural arylsulfonamides are relatively infrequent. In this work, two novel arylsulfonamide natural products were first synthesized, and then a series of novel molecules derived from natural arylsulfonamides were designed and synthesized, and their in vitro cytotoxic activities against A875, HepG2, and MARC145 cell lines were systematically evaluated.

View Article and Find Full Text PDF

Flaviviruses are important arthropod-borne pathogens that represent an immense global health problem. Their unprecedented epidemic rate and unpredictable clinical features underscore an urgent need for antiviral interventions. Dehydroepiandrosterone (DHEA) is a natural occurring adrenal-derived steroid in the human body that has been associated in protection against various infections.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, causes neonatal pig acute gastrointestinal infection with a characterization of severe diarrhea, vomiting, high morbidity, and high mortality, resulting in tremendous damages to the swine industry. Neither specific antiviral drugs nor effective vaccines are available, posing a high priority to screen antiviral drugs. The aim of this study is to investigate anti-PEDV effects of carbazole alkaloid derivatives.

View Article and Find Full Text PDF

Flaviviruses are the major emerging arthropod-borne pathogens globally. However, there is still no practical anti-flavivirus approach. Therefore, existing and emerging flaviviruses desperately need active broad-spectrum drugs.

View Article and Find Full Text PDF

Difficulty in preventing crops from plant viruses urges to discover novel efficient antiviral chemicals, which is sped up by precise screening methods. Fluorescence-based methods have recently been applied as innovative and rapid tools for visually monitoring the replication of viruses and screening of antivirals, whereas the quantification of fluorescence signals mainly depends on manually calculating the fluorescent spots, which is time-consuming and imprecise. In the present work, the fluorescence spots were automatically identified, and the fluorescence area was directly quantified by a program developed in our group, which avoided subjective errors from the operators.

View Article and Find Full Text PDF

Carbazole alkaloids is an important class of natural products with diverse biological functions. So, the aim of this article is to explore new chemical entities containing carbazole scaffold as potential novel cytotoxic agents based on our developed three-component indole-to-carbazole reaction. Two series of carbazole derivatives were designed and synthesized, and their in vitro cytotoxic activities against three cell lines (A875, HepG2, and MARC145) were evaluated.

View Article and Find Full Text PDF

-(Hetero)aryl-4,5-unsubstituted pyrroles were synthesized from (hetero)arylamines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal by using aluminum(III) chloride as a Lewis acid catalyst through [1 + 2 + 2] annulation. This new versatile methodology provides a wide scope for the synthesis of different functional -(hetero)aryl-4,5-unsubstituted pyrrole scaffolds, which can be further derived to access multisubstituted pyrrole-3-carboxamides. In the presence of 1.

View Article and Find Full Text PDF

Biological control of plant pathogens is considered as one of the green and effective technologies using beneficial microorganisms or microbial secondary metabolites against plant diseases, and so microbial natural products have played important roles in the research and development of new and green agrochemicals. To explore the potential applications for natural γ-lactam alkaloids and their derivatives, 26 γ-lactams that have flexible substituent patterns were synthesized and characterized, and their antifungal activities against eight kinds of plant pathogens belonging to oomycetes, basidiomycetes, and deuteromycetes were fully evaluated. In addition, the high potential compounds were further tested using an assay against blight of pepper to verify a practical application for controlling oomycete diseases.

View Article and Find Full Text PDF

Pityriacitrin is a natural marine alkaloid with a typical β-carboline scaffold, and which has been demonstrated to exhibit diverse biological functions. The special structural features for pityriacitrin lead to the increasing research interest and the emergence of versatile derivatives, and many pityriacitrin analogues have been isolated or synthesized over the past decades. The structural diversity and evolved biological activity of these natural alkaloids can offer opportunities for the development of highly potential novel drugs with a new mechanism of action, and therefore, the aim of this brief review is to describe the discovery, synthesis, and biological properties of natural pityriacitrin and its derivatives, as well as the isolation source.

View Article and Find Full Text PDF

Aryl-oxazole alkaloids are an important class of heterocyclic natural products, and which has been demonstrated to exhibit broad biological functions. During the course of our research for highly active compounds from natural products, the natural hinduchelins A-D with typical aryl-oxazole unit have been synthesized and investigated. So, in order to develop highly potential functional molecules, a series of novel sulfur-containing aryl-oxazole compounds derived from natural hinduchelins was designed and synthesized, and their in vitro fungicidal activities against four common plant pathogenic fungi (oomycetes Phytophthora capsici, ascomycetes Sclerotinia sclerotiorum, deuteromycetes Botrytis cinerea and basidiomycetes Rhizoctonia solani) were evaluated, the results demonstrated that compounds 7b and 7c displayed good selectivity and specificity in vitro against basidiomycetes R.

View Article and Find Full Text PDF

A series of γ-lactam analogs containing 1,3-benzodioxole moiety were designed, and these derivatives were synthesized from the lead compound of lactam via a structural diversity-oriented synthesis, their structures were confirmed by HNMR,CNMR, ESI-MS spectrum. Their antifungal activities were evaluated against four serious and typically crop-threatening agricultural fungi, including Rhizoctonia solani, Alternaria tenuis Nees, Gloeosporium theae-sinensis, and Fusarium graminearum. Some of these derivatives exhibited activity against Alternaria tenuis Nees higher than that of commercial fungicides carbendazim, such as compounds 7a, 7b, and 7i, compared with the blank control, some of these derivatives showed good antifungal activities against Gloeosporium theae-sinensis and Fusarium graminearum.

View Article and Find Full Text PDF

Weeds had caused significant loss for crop production in the process of agriculture. Herbicides have played an important role in securing crop production. However, the high reliance on herbicides has led to environmental issues as well as the evolution of herbicide resistance.

View Article and Find Full Text PDF

Steroids are classes of natural products widely distributed in nature, which have been demonstrated to exhibit broad biological functions, and have also attracted increasing interest from bioorganic and pharmaceutical researches. In order to develop novel chemical entities as potential cytotoxic agents, a series of steroidal isatin conjugations derived from epiandrosterone and androsterone were efficiently prepared and characterized, and all these obtained compounds were screened for their potential cytotoxic activities. The preliminary bioassay indicated that most of the newly synthesized compounds exhibited good cytotoxic activities against human gastric cancer (SGC-7901), melanoma (A875), and hepatocellular liver carcinoma (HepG2) cell lines compared with 5-fluorouracil (5-FU), which might be considered as promising scaffold for further development of potential anticancer agents.

View Article and Find Full Text PDF

In order to find new potential pesticide molecules with antifungal activities, we have designed and synthesized a series of amino acid-oriented poly-substituted tetramic acid derivatives, and evaluated their potential antifungal activities against six kinds of plant pathogenic fungus commonly found in agriculture systematically, including Phomopsis adianticola, Fusarium graminearum, Alternaria tenuis Nees, Magnaporthe oryzae, Gloeosporium theae-sinensis, Sclerotinia sclerotiorum. According to the preliminary bioassay studies, all tested molecules, especially compounds I-2, I-5, I-12, I-15, exhibited significant and broad-spectrum anti-fungal effect in vitro compared to the intermediates M-1, M-2, M-3 and hymexazol. What's more, the inhibition rate of compounds I-5, I-6, I-15 against Phomopsis adianticola reached 74.

View Article and Find Full Text PDF