Publications by authors named "Shaowu Zou"

Branched-chain amino acid (BCAA) metabolism is potentially linked with development of pancreatic ductal adenocarcinoma (PDAC). BCAA transaminase 2 (BCAT2) was essential for the collateral lethality conferred by deletion of malic enzymes in PDAC and the BCAA-BCAT metabolic pathway contributed to non-small-cell lung carcinomas (NSCLCs) other than PDAC. However, the underlying mechanism remains undefined.

View Article and Find Full Text PDF

Increased aerobic glycolysis is a hallmark of cancer metabolism. How cancer cells coordinate glucose metabolism with extracellular glucose levels remains largely unknown. Here, we report that coactivator-associated arginine methyltransferase 1 (CARM1 or PRMT4) signals glucose availability to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and suppresses glycolysis in liver cancer cells.

View Article and Find Full Text PDF

Here, bioinformatics data from Sirt1 knock-out (KO) and knock-in (KI) mice suggest that Sirt1 inhibits Wnt/βCatenin signaling in the liver. However, it is unclear how this relationship occurs and how it contributes to malignant phenotypes in liver cancer cells. We found that Sirt1 expression promotes phosphorylation of βCatenin at Ser675, which may subsequently decrease expression of total-βCatenin.

View Article and Find Full Text PDF

O-GlcNAcylation has been implicated in the tumorigenesis of various tissue origins, but its function in liver tumorigenesis is not clear. Here, we demonstrate that O-GlcNAcylation can enhance the expression, stability and function of Yes-associated protein (YAP), the downstream transcriptional regulator of the Hippo pathway and a potent oncogenic factor in liver cancer. O-GlcNAcylation induces transformative phenotypes of liver cancer cells in a YAP-dependent manner.

View Article and Find Full Text PDF

Distinctive from their normal counterparts, cancer cells exhibit unique metabolic dependencies on glutamine to fuel anabolic processes. Specifically, pancreatic ductal adenocarcinoma (PDAC) cells rely on an unconventional metabolic pathway catalyzed by aspartate aminotransferase, malate dehydrogenase 1 (MDH1), and malic enzyme 1 to rewire glutamine metabolism and support nicotinamide adenine dinucleotide phosphate (NADPH) production. Here, we report that methylation on arginine 248 (R248) negatively regulates MDH1.

View Article and Find Full Text PDF

Metabolic alteration is a hallmark of cancer. Dysregulation of methionine metabolism is implicated in human liver cancer. Methionine adenosyltransferase IIα (MAT IIα) is a key enzyme in the methionine cycle, catalysing the production of S-adenosylmethionine (SAM), a key methyl donor in cellular processes, and is associated with uncontrolled cell proliferation in cancer.

View Article and Find Full Text PDF

High aldehyde dehydrogenase (ALDH) activity is a marker commonly used to isolate stem cells, particularly breast cancer stem cells (CSCs). Here, we determined that ALDH1A1 activity is inhibited by acetylation of lysine 353 (K353) and that acetyltransferase P300/CBP-associated factor (PCAF) and deacetylase sirtuin 2 (SIRT2) are responsible for regulating the acetylation state of ALDH1A1 K353. Evaluation of breast carcinoma tissues from patients revealed that cells with high ALDH1 activity have low ALDH1A1 acetylation and are capable of self-renewal.

View Article and Find Full Text PDF

We have identified the most appropriate method of isolating human umbilical cord matrix-derived mesenchymal stem cells (UCM-MSCs) and compared morphological, phenotypic, proliferative, and differentiation characteristics of UCM-MSCs with bone marrow-derived MSCs (BM-MSCs) and umbilical cord blood-derived MSCs (UCB-MSCs). Three explant culture methods and 3 enzymatic methods were compared with regards to time for primary culture, cell number, cell morphology, immune phenotype, and differentiation potential. Morphological, phenotypic, proliferative, and differentiation characteristics of UCM-MSCs, BM-MSCs, and UCB-MSCs were also compared.

View Article and Find Full Text PDF

Background: CYP2C19 belongs to the cytochrome P450 superfamily of enzymes involved in activating and detoxifying many carcinogens and endogenous compounds, which has attracted considerable attention as a candidate gene for digestive system cancer. CYP2C19 has two main point mutation sites (CYP2C19*2, CYP2C19*3) leading to poor metabolizer (PM) phenotype. In the past decade, the relationship between CYP2C19 polymorphism and digestive system cancer has been reported in various ethnic groups; however, these studies have yielded contradictory results.

View Article and Find Full Text PDF

Tumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types.

View Article and Find Full Text PDF

A novel and facile synthetic protocol for the construction of benzazepine and benzoxepine derivatives through a copper(I)-catalyzed reaction of 2-(2-ethynylphenyl)-1-tosylaziridine or 2-(2-ethynylphenyl)oxirane with sulfonyl azides is disclosed. A ketenimine is the key intermediate during the reaction process.

View Article and Find Full Text PDF

Aim: To explore the role of Med19, a component of the Mediator complex that coactivates DNA-binding transcription factors, in the proliferation and tumorigenesis of human hepatocellular carcinoma cells.

Methods: The human hepatocellular carcinoma cell lines HepG2 and Hep3B were infected with lentiviral vectors encoding interfering RNA (RNAi) targeting the Med19 gene. To further confirm the inhibitory effects of RNAi vectors on Med19 gene expression, quantitative real-time RT-PCR and Western blotting assays were used.

View Article and Find Full Text PDF