Herpesvirus assembly requires the cytoplasmic association of large macromolecular and membrane structures that derive from both the nucleus and cytoplasmic membrane systems. Results from the study of human cytomegalovirus (HCMV) in cells where it organizes a perinuclear cytoplasmic virus assembly compartment (cVAC) show a clear requirement for the minus-end-directed microtubule motor, dynein, for virus assembly. In contrast, the assembly of herpes simplex virus -1 (HSV-1) in epithelial cells where it forms multiple dispersed, peripheral assembly sites is only mildly inhibited by the microtubule-depolymerizing agent, nocodazole.
View Article and Find Full Text PDFNuclear envelope budding in herpesvirus nuclear egress may be negatively regulated, since the pUL31/pUL34 nuclear egress complex heterodimer can induce membrane budding without capsids when expressed ectopically or on artificial membranes , but not in the infected cell. We have previously described a pUL34 mutant that contained alanine substitutions at R158 and R161 and that showed impaired growth, impaired pUL31/pUL34 interaction, and unregulated budding. Here, we determine the phenotypic contributions of the individual substitutions to these phenotypes.
View Article and Find Full Text PDFHerpes simplex virus (HSV) is a neuroinvasive virus that has been used as a model organism for studying common properties of all herpesviruses. HSV induces host organelle rearrangement and forms multiple, dispersed assembly compartments in epithelial cells, which complicates the study of HSV assembly. In this study, we show that HSV forms a visually distinct unitary cytoplasmic viral assembly center (cVAC) in both cancerous and primary neuronal cells that concentrates viral structural proteins and is a major site of capsid envelopment.
View Article and Find Full Text PDF