Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities.
View Article and Find Full Text PDFHerein, two series of HDAC/tubulin dual inhibitors via introducing the key pharmacophore of HDAC inhibitor into the skeletons of 2,6-diarylpyridine and 2'-arylchalcone were synthesized. Among them, 2,6-diarylpyridine-based hydroxamic acid 10a exhibited good inhibitory activity against HDAC8 (IC = 117 nM) with 50-fold and 42-fold high selectivity relative to HDAC1 and HDAC6, respectively. Meanwhile, 10a disrupted tubulin polymerization effectively and exhibited potent antiproliferative activity against BE-(2)-C cell line, with IC value of 17 nM.
View Article and Find Full Text PDF