Publications by authors named "Shaowei Lu"

Water use efficiency (WUE) is a tracer for plants on the trade-off exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere; therefore, a dynamic investigation of WUE and its driving factors will be of great significance to optimize water and carbon fitness and predict the plants' response to climate change. In our study, a modified water use efficiency model was proposed to improve the quantification of carbon and water processes by adding a photosynthesis-g simulation dependent on CO concentration and soil moisture to the photosynthetic transpiration model (noted as SMPTSB model). Actual measured water use efficiencies were respectively obtained by the gas exchange measurements (WUE) and the δC that defined as the carbon-heavy isotope of the water-soluble compound in leaves (WUE) of three-year tree saplings of Platycladus orientalis (L.

View Article and Find Full Text PDF

To uncover the internal mechanisms of various drought stress intensities affecting the soluble sugar content in organs and its regulation by endogenous abscisic acid (ABA), we selected the saplings of , a typical tree species in the Beijing area, as our research subject. We investigated the correlation between tree soluble sugars and endogenous ABA in the organs (comprised of leaf, branch, stem, coarse root, and fine root) under two water treatments. One water treatment was defined as T1, which stopped watering until the potted soil volumetric water content (SWC) reached the wilting coefficient and then rewatered the sapling.

View Article and Find Full Text PDF

A new type of embedded composite material health monitoring nano-sensor is designed to ensure that the unique material advantages of nanofillers can be maximized. The carbon nanotubes (CNTs)/polysulfone (PSF)/polyimide (PI) thin film sensor in this paper is obtained by the self-assembly of a PSF/PI asymmetric porous membrane which is prepared by a phase inversion method through vacuum filtration of SWCNTs. It is a new structure for a practical CNT sensor that can take into account both 'composite health monitoring and damage warning' and 'composite mechanical enhancement'.

View Article and Find Full Text PDF

Designing flexible wearable sensors with a wide sensing range, high sensitivity, and high stability is a vulnerable research direction with a futuristic field to study. In this paper, TiCT MXene/carbon nanotube (CNT)/thermoplastic polyurethane (TPU)/polysulfone (PSF) composite films with excellent sensor performance were obtained by self-assembly of conductive fillers in TPU/PSF porous films with an asymmetric structure through vacuum filtration, and the porous films were prepared by the phase inversion method. The composite films consist of the upper part with finger-like "cavities" filled by MXene/CNTs, which reduces the microcracks in the conductive network during the tensile process, and the lower part has smaller apertures of a relatively dense resin cortex assisting the recovery process.

View Article and Find Full Text PDF

Plants can effectively purify PM in the air, thereby improving air quality. Understanding the mechanisms of the uptake and distribution of PM in plants is crucial for enhancing their ecological benefits. In this study, the uptake and distribution of the water-soluble inorganic compounds ammonium (NH) and nitrate (NO) ions in PM by the two native Chinese conifers Manchurian red pine (Pinus tabuliformis) and Bunge's pine (P.

View Article and Find Full Text PDF

To explore whether there were differences among the patterns of response of grasslands with different levels of degradation to extreme drought events and nitrogen addition, three grasslands along a degradation gradient (extremely, moderately, and lightly degraded) were selected in the Bashang area of northern China using the human disturbance index (HDI). A field experiment with simulated extreme spring drought, nitrogen addition, and their interaction was conducted during the growing seasons of 2020 and 2021. The soil moisture, aboveground biomass, and composition of the plant community were measured.

View Article and Find Full Text PDF

The gills are the major organ for Na uptake in teleosts. It was proposed that freshwater (FW) teleosts adopt Na/H exchanger 3 (Nhe3) as the primary transporter for Na uptake and Na-Cl co-transporter (Ncc) as the backup transporter. However, convincing molecular physiological evidence to support the role of Ncc in branchial Na uptake is still lacking due to the limitations of functional assays in the gills.

View Article and Find Full Text PDF

More and more studies have shown that Branched chain amino acid transaminase 1 (BCAT1) is involved in the occurrence and development of a variety of tumors. However, the mechanism of its occurrence and development in hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrated the relationship between BCAT1 and AKT signaling pathway, as well as EMT, and the clinical significance of BCAT1 by using BCAT1 expression in 5 cell lines and 113 liver cancer and non-liver cancer tissue samples.

View Article and Find Full Text PDF

Based on community investigation data from grasslands on two different soil parent material types (loess and sand parent materials) and under three human utilization modes in the Saihan Ullah Reserve, we calculated human disturbance index (HDI) and biodiversity indices and analyzed the interactions between species diversity and degradation levels. The results showed that degradation status varied across different soil parent material types and human utilization modes, and that degradation levels of loess and sand parent materials both increased with the enhancement of human utilization intensification. HDI of loess parent material grasslands (mean value of 1.

View Article and Find Full Text PDF

In this study, we examined the regularity of phenological rhythmical change of plant water-soluble compound δC (δC) in spring for two typical tree species in the warm temperate zone of China, and . The δC in each organ of those two species in the spring phenological period were measured to explore the relationship between δC and related environmental factors. The results showed that there were significant differences in δC values of each organ between s and , with higher δC(-25.

View Article and Find Full Text PDF

An exoskeleton, a wearable device, was designed based on the user's physical and cognitive interactions. The control of the exoskeleton uses biomedical signals reflecting the user intention as input, and its algorithm is calculated as an output to make the movement smooth. However, the process of transforming the input of biomedical signals, such as electromyography (EMG), into the output of adjusting the torque and angle of the exoskeleton is limited by a finite time lag and precision of trajectory prediction, which result in a mismatch between the subject and exoskeleton.

View Article and Find Full Text PDF

Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation.

View Article and Find Full Text PDF

The universal application of wearable strain sensors in various situations for human-activity monitoring is considerably limited by the contradiction between high sensitivity and broad working range. There still remains a huge challenge to design sensors featuring simultaneous broad working range and high sensitivity. Herein, a typical bilayer-conductive structure TiCT MXene/carbon nanotubes (CNTs)/thermoplastic polyurethane (TPU) composite film was developed by a simple and scalable vacuum filtration process utilizing a porous electrospun thermoplastic polyurethane (TPU) mat as a skeleton.

View Article and Find Full Text PDF

. Hyperscanning is an emerging technology that concurrently scans the neural dynamics of multiple individuals to study interpersonal interactions. In particular, hyperscanning with electroencephalography (EEG) is increasingly popular owing to its mobility and its ability to allow studying social interactions in naturalistic settings at the millisecond scale.

View Article and Find Full Text PDF

Air pollution caused by PM particles is a critical issue for public health that adversely affects people living in urban cities. Short-term Mega-events such as international meetings, sports tournaments, and traditional festivals can profoundly influence the local air quality. However, the extent of these influences and their role in improving or deteriorating the local air quality is still unclear.

View Article and Find Full Text PDF

Intravascular ultrasound (IVUS) has become a useful tool in the detection of coronary artery disease. However, non-uniform rotation distortion (NURD) reduces the image quality. In order to suppress the influence of NURD, a piezoelectric motor that can meet the requirements of IVUS catheters has been proposed.

View Article and Find Full Text PDF

High temperatures induce early bolting in lettuce (Lactuca sativa L.), which decreases both quality and production. However, knowledge of the molecular mechanism underlying high temperature promotes premature bolting is lacking.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) and cancer-associated cachexia (CAC) are multifactorial and characterized by dysregulated inflammatory networks. Whether the proinflammatory cytokine IL-20 is involved in the complex networks of PDAC and CAC remains unclear. Here, we report that elevated IL-20 levels in tumor tissue correlate with poor overall survival in 72 patients with PDAC.

View Article and Find Full Text PDF
Article Synopsis
  • Arginine vasopressin (Avp) plays a key role in regulating water reabsorption and ion balance, but its mechanisms are not fully understood.
  • Researchers used zebrafish embryos to study how Avp affects ion and acid-base homeostasis and found that blocking Avp reduced the expression of genes related to ion transport and lowered chloride levels.
  • Their findings suggest a molecular pathway in which Avp influences chloride balance, shedding light on its broader functions in the body.
View Article and Find Full Text PDF

This paper proposes a flexible and highly sensitive carbon nanotube buckypaper as a sensing layer embedded within a composite for cure monitoring applications. The buckypaper was fabricated with mono-dispersion of multi-wall carbon nanotubes by a spray-vacuum filtration method. Six different curing conditions (with maximum heating temperatures of 120 °C, 108 °C, 95 °C, 90 °C, 85 °C and 75 °C) were designed to characterize and analyze the electromechanical response of the BP sensor to the composite structure, and the results indicated that the temperature coefficient of resistance of buckypaper is associated to the resin curing behavior.

View Article and Find Full Text PDF

Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C).

View Article and Find Full Text PDF

Ethnopharmacological Relevance: An efficacious antidepressant without unwanted side effects is need urgently at present. This study aimed to investigate whether treatment with four Chinese herbal medicines (CHMs), namely Radix Astragali, Saposhnikovia divaricate (SD), Eucommia ulmoides Oliv. bark (EU), and Corydalis yanhusuo W.

View Article and Find Full Text PDF

Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites.

View Article and Find Full Text PDF

We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%.

View Article and Find Full Text PDF

Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.

View Article and Find Full Text PDF