Spatial transcriptomics revolutionizes the understanding of tissue organization and cellular interactions by combining high-resolution spatial information with gene expression profiles. Existing spatial transcriptomics analysis platforms face challenges in accommodating diverse techniques, integrating multi-omics data, and providing comprehensive analytical workflows. STExplore, an advanced online platform, is developed to address these limitations.
View Article and Find Full Text PDFLong non-coding RNAs play a crucial role in many life processes of cell, such as genetic markers, RNA splicing, signaling, and protein regulation. Considering that identifying lncRNA's localization in the cell through experimental methods is complicated, hard to reproduce, and expensive, we propose a novel method named IDDLncLoc in this paper, which adopts an ensemble model to solve the problem of the subcellular localization. In the proposal model, dinucleotide-based auto-cross covariance features, k-mer nucleotide composition features, and composition, transition, and distribution features are introduced to encode a raw RNA sequence to vector.
View Article and Find Full Text PDFLong noncoding RNA (lncRNA) plays a crucial role in many critical biological processes and participates in complex human diseases through interaction with proteins. Considering that identifying lncRNA-protein interactions through experimental methods is expensive and time-consuming, we propose a novel method based on deep learning that combines raw sequence composition features, hand-designed features and structure features, called LGFC-CNN, to predict lncRNA-protein interactions. The two sequence preprocessing methods and CNN modules (GloCNN and LocCNN) are utilized to extract the raw sequence global and local features.
View Article and Find Full Text PDF