Publications by authors named "Shaopeng Gao"

High lithium (Li) and cesium (Cs) concentrations in the Qinghai-Xizang Plateau thermal springs pose environmental and health challenges, but their origins and enrichment mechanisms remain unclear. This study focuses on the Sogdoi geothermal field, located along the southern Karakoram Fault, to investigate these processes. Multi-isotope analyses (H, O, Li, Sr) reveal that Li and Cs predominantly originate from the host rocks, especially granitoids and meta-sedimentary rocks, rather than from magmatic fluids.

View Article and Find Full Text PDF

Carbonaceous particles play a crucial role in atmospheric radiative forcing. However, our understanding of the behavior and sources of carbonaceous particles in remote regions remains limited. The Tibetan Plateau (TP) is a typical remote region that receives long-range transport of carbonaceous particles from severely polluted areas such as South Asia.

View Article and Find Full Text PDF

Atmospheric phosphorus is a vital nutrient for ecosystems whose sources and fate are still debated in the fragile Himalayan region, hindering our comprehension of its local ecological impact. This study provides novel insights into atmospheric phosphorus based on the study of total suspended particulate matter at the Qomolangma station. Contrary to the prevailing assumptions, we show that biomass burning (BB), not mineral dust, dominates total dissolved phosphorus (TDP, bioavailable) deposition in this arid region, especially during spring.

View Article and Find Full Text PDF

Fog significantly affects the air quality and human health. To investigate the health effects and mechanisms of atmospheric fine particulate matter (PM) during fog episodes, PM samples were collected from the coastal suburb of Qingdao during different seasons from 2021 to 2022, with the major chemical composition in PM analyzed. The oxidative potential (OP) of PM was determined using the dithiothreitol (DTT) method.

View Article and Find Full Text PDF
Article Synopsis
  • The Himalayas and Tibetan Plateau are crucial for biodiversity and sustainable development, but the factors causing changes in their ecosystem are not well understood.
  • Ground and satellite observations from the Qomolangma monitoring station reveal that wildfire emissions in South Asia can affect the HTP ecosystem, especially during spring.
  • These wildfires significantly increase nitrogen levels in the atmosphere, posing a threat to the ecosystem, and future climate change is expected to heighten wildfire occurrences.
View Article and Find Full Text PDF

Persistent organic pollutants (POPs) could pose adverse risks towards fish in aquatic environments. However, related risk assessments in remote regions are lacking. In this study we investigated three kinds of POPs in four common fish species (n = 62) from high-altitude rivers and lakes on the Tibetan Plateau.

View Article and Find Full Text PDF

Rapid retreat and darkening of most glaciers in the Tibetan Plateau (TP) are enhanced by the deposition of light-absorbing particles (LAPs). Here, we provided new knowledge on the estimation of albedo reduction caused by black carbon (BC), water-insoluble organic carbon (WIOC), and mineral dust (MD), based on a comprehensive study of snowpit samples from ten glaciers across the TP collected in the spring of 2020. According to the albedo reductions caused by the three LAPs, the TP was divided into three sub-regions: the eastern and northern margins, Himalayas and southeastern TP, and western to inner TP.

View Article and Find Full Text PDF

Aerosols affect the radiative forcing of the global climate and cloud properties. Organic aerosols are among the most important, yet least understood, components of the sensitive Tibetan Plateau atmosphere. Here, the concentration of and the seasonal and diurnal variations in biomass burning and biogenic aerosols, and their contribution to organic aerosols in the inland Tibetan Plateau were investigated using molecular tracers.

View Article and Find Full Text PDF

Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.

View Article and Find Full Text PDF

Nitrated phenols (NPs) are emitted from biomass burning and vehicles emissions, or produced by oxidation of phenolic precursors. Previous studies have investigated the emission factors of NPs from various primary emission sources. However, there is no study on the source apportionment method for the diagnostic ratio of NPs.

View Article and Find Full Text PDF

Knowledge of the elemental composition of aerosols at remote sites is important for evaluating the influence of anthropogenic activities. In this study, the elemental composition and sources of total suspended particles (TSP) at Yaze, a remote site in the southeastern Tibetan Plateau (TP), were investigated. The results showed that the mean elemental concentrations at Yaze were relatively low compared with those in other areas of the TP.

View Article and Find Full Text PDF

As an important component of carbonaceous particles, organic carbon (OC) plays a significant role in radiative forcing in the atmosphere. Recently, the warming effect of light-absorbing OC has been emphasized. Water-soluble organic carbon (WSOC) is commonly used as a surrogate to investigate the light absorption of OC.

View Article and Find Full Text PDF

Due to increased anthropogenic activities in recent decades, many heavy metal elements have been emitted into the atmosphere and transported to remote regions. The Enrichment factors (EFs) is a normally used method for evaluating the source of heavy metal elements. However, because of some flaws of this method (e.

View Article and Find Full Text PDF

Limited studies have been carried out on the historical variations of atmospheric polycyclic aromatic hydrocarbons (PAHs), especially in remote regions of the world. In this study, century-long record of PAHs (1916-2018) were reconstructed from tree rings in the remote southeastern Tibetan Plateau (TP). The total concentrations of 15 PAHs varied from 27.

View Article and Find Full Text PDF

Black carbon (BC), by the combustion of fossil fuels and biomass, has profound effects on climate change and glacier retreat in industrial eras. In the present study, we report refractory BC (rBC) in an ice core spanning 1850-2014, retrieved from the Hariqin Glacier of the Tanggula Mountains in the central Tibetan Plateau, measured using a single particle soot photometer (SP2). The rBC concentration shows a three-fold increase since the 1950s.

View Article and Find Full Text PDF

Carbonaceous matter, including organic carbon (OC) and black carbon (BC), is an important climate forcing agent and contributes to glacier retreat in the Himalayas and the Tibetan Plateau (HTP). The HTP - the so-called "Third Pole" - contains the most extensive glacial area outside of the polar regions. Considerable research on carbonaceous matter in the HTP has been conducted, although this research has been challenging due to the complex terrain and strong spatiotemporal heterogeneity of carbonaceous matter in the HTP.

View Article and Find Full Text PDF

Carbonaceous particles play an important role in climate change, and an increase in their emission and deposition causes glacier melting in the Himalayas and the Tibetan Plateau (HTP). This implies that studying their basic characteristics is crucial for a better understanding of the climate forcing observed in this area. Thus, we investigated characteristics of carbonaceous particles at a typical remote site of southeastern HTP.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms consisting of toxic taxa can produce a wide variety of toxins to threaten water quality, ecosystem functions and services. Of greater concern was the changing patterns of cyanobacterial assemblage were not well understood due to the lack of long-term monitoring data over the temporal scale. Biodiversity change in cyanobacterial community and paleoenvironmental variables over the past 170 years in Lake Chenghai were investigated based on sedimentary ancient DNA metabarcoding and traditional paleolimnological analysis.

View Article and Find Full Text PDF

As an important component of organic carbon (OC), brown carbon (BrC) plays a significant role in radiative forcing in the atmosphere. Water-insoluble OC (WIOC) generally has higher light absorption ability than water-soluble OC (WSOC). The mass absorption cross-section (MAC) of WIOC is normally investigated by dissolving OC in methanol.

View Article and Find Full Text PDF

Carbonaceous matter has an important impact on glacial retreat in the Tibetan Plateau, further affecting the water resource supply. However, the related studies on carbonaceous matter are still scarce in Geladaindong (GLDD) region, the source of the Yangtze River. Therefore, the concentration, source and variations of carbonaceous matter at Ganglongjiama (GLJM) glacier in GLDD region were investigated during the melting period in 2017, which could deepen our understanding on carbonaceous matter contribution to glacier melting.

View Article and Find Full Text PDF

Brown carbon (BrC) has been proposed as an important driving factor in climate change due to its light absorption properties. However, our understanding of BrC's chemical and optical properties are inadequate, particularly at remote regions. This study conducts a comprehensive investigation of BrC aerosols in summer (Aug.

View Article and Find Full Text PDF

Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions.

View Article and Find Full Text PDF