Publications by authors named "Shaolin Liang"

Article Synopsis
  • The study highlights the growing influence of digital health technologies during the COVID-19 pandemic, emphasizing the importance of patents for understanding industry trends and protecting innovations.
  • The main objective was to analyze digital health patent data from 2017 to 2021 to identify key technological hotspots and development trajectories.
  • Results indicated a total of 15,763 patents, with China leading in submissions, Koninklijke Philips as the top organization, and identified hotspots in areas like medical equipment, image analysis, and electrical diagnosis.
View Article and Find Full Text PDF
Article Synopsis
  • Asthenozoospermia (AZS) is a common cause of male infertility due to low sperm motility, where recent research has looked at how the microecology of the male reproductive system may affect reproductive health, but connections between seminal microecology and infertility are still uncertain.
  • The study utilized advanced sequencing and analysis to examine the microbial communities and metabolites in the semen of AZS patients, identifying significant differences in microbial composition across varying severity levels of AZS.
  • Results showed specific bacterial genera associated with AZS that correlated with a key metabolite, hexadecanamide, which was found to enhance sperm motility through gene expression changes and upregulation of proteins beneficial for sperm function.
View Article and Find Full Text PDF

Background: Preimplantation genetic testing (PGT) serves as a tool to avoid genetic disorders in patients with known genetic conditions. However, once a selected embryo is transferred, implantation success is attained independent of embryo quality. Using PGT alone is unable to tackle implantation failure caused by endometrial receptivity (ER) abnormalities in these patients.

View Article and Find Full Text PDF

Background: Thin endometrium is considered suboptimal for embryo implantation, leading to compromised pregnancy rates without effective therapies. While some studies have reported promoted endometrial growth after a period of hyperbaric oxygen therapy (HBOT) in patients with intrauterine adhesion, there have been no reports in patients with resistant thin endometrium. The purpose of this study was to investigate the impact of HBOT on endometrium growth and pregnancy outcomes in patients with resistant thin endometrium during frozen embryo transfer (FET) treatments.

View Article and Find Full Text PDF

Background: Artificial intelligence technology has become a mainstream trend in the development of medical informatization. Because of the complex structure and a large amount of medical data generated in the current medical informatization process, big data technology to assist doctors in scientific research and analysis and obtain high-value information has become indispensable for medical and scientific research.

Methods: This study aims to discuss the architecture of diabetes intelligent digital platform by analyzing existing data mining methods and platform building experience in the medical field, using a large data platform building technology utilizing the Hadoop system, model prediction, and data processing analysis methods based on the principles of statistics and machine learning.

View Article and Find Full Text PDF

Electrochemical aptamer-based (E-AB) sensors using conformational change-induced electron transfer kinetics are sensitive, reagent-less, and cost-effective tools for molecular sensing. Current advances in this technology can allow continuous drug pharmacokinetic monitoring in living animals (Dauphin-Ducharme et al., ACS Sens 4(10):2832-2837, 2019; Idili et al.

View Article and Find Full Text PDF

Malaria is an infectious disease caused by parasitic protozoans from the genus Plasmodium, with the species P. falciparum causing the highest number of deaths worldwide. Rapid diagnostic tests (RDTs) have become critical in the management of malaria, but current RDTs that detect P.

View Article and Find Full Text PDF

Normal reproductive functioning is critically dependent on pulsatile secretion of luteinising hormone (LH). Assessment of LH pulsatility is important for the clinical diagnosis of reproductive disorders, but current methods are hampered by frequent blood sampling coupled to expensive serial immunochemical analysis. Here, we report the development and application of a Robotic APTamer-enabled Electrochemical Reader (RAPTER) electrochemical analysis system to determine LH pulsatility.

View Article and Find Full Text PDF

DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses.

View Article and Find Full Text PDF

There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach.

View Article and Find Full Text PDF

Nucleic acid-mediated nanomachines have significant potential in biomedical applications but new approaches that link molecular recognition of proteins to change in nucleic acid structure and function are required. Here, a split DNA aptamer is integrated into G-quadruplex tweezers, which close in the presence of the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase (PfLDH). Closing of the tweezers enables G-quadruplex hemin mediated peroxidase activity, which can be observed colorimetrically.

View Article and Find Full Text PDF

Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round.

View Article and Find Full Text PDF

The functionalisation of microbeads with oligonucleotides has become an indispensable technique for high-throughput aptamer selection in SELEX protocols. In addition to simplifying the separation of binding and non-binding aptamer candidates, microbeads have facilitated the integration of other technologies such as emulsion PCR (ePCR) and Fluorescence Activated Cell Sorting (FACS) to high-throughput selection techniques. Within these systems, monoclonal aptamer microbeads can be individually generated and assayed to assess aptamer candidate fitness thereby helping eliminate stochastic effects which are common to classical SELEX techniques.

View Article and Find Full Text PDF