Publications by authors named "Shaolei Wang"

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.

View Article and Find Full Text PDF

Breast milk storage provides flexibility for working mothers, though its effects on milk fat globule membrane (MFGM) lipids are not fully understood. This study examined breast milk stored under refrigerated (2 and 4 days) and frozen (7, 14, and 21 days) conditions, finding that these storage durations preserved similar structural characteristics during in vitro gastrointestinal digestion. The analysis focused on MFGM lipid composition under various storage conditions using non-targeted lipidomics.

View Article and Find Full Text PDF

The recent SARS-CoV-2 pandemic underscores the need for rapid and accurate prediction of clinical thrombotic events. Here, we developed nanoengineered multichannel immunosensors for rapid detection of circulating biomarkers associated with thrombosis, including C-reactive protein (CRP), calprotectin, soluble platelet selectin (sP-selectin), and D-dimer. We fabricated the immunosensors using fiber laser engraving of carbon nanotubes and CO laser cutting of microfluidic channels, along with the electrochemical deposition of gold nanoparticles to conjugate with biomarker-specific aptamers and antibody.

View Article and Find Full Text PDF

Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state.

View Article and Find Full Text PDF

Water-oil-water (W/O/W) double emulsions have been widely studied and applied in probiotic encapsulation. However, challenges remain in enhancing emulsion stability, protecting encapsulated probiotics from adverse environmental conditions, and improving their viability. This study aimed to optimize the functional components of each phase of the W/O/W emulsion to address these issues.

View Article and Find Full Text PDF

Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms.

View Article and Find Full Text PDF

The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration.

View Article and Find Full Text PDF

The severe mismatch between solid bioelectronics and dynamic biological tissues has posed enduring challenges in the biomonitoring community. Here, we developed a reconfigurable liquid cardiac sensor capable of adapting to dynamic biological tissues, facilitating ambulatory cardiac monitoring unhindered by motion artifacts or interference from other biological activities. We employed an ultrahigh-resolution 3D scanning technique to capture tomographic images of the skin on the wrist.

View Article and Find Full Text PDF

A novel living biointerface that integrates living biological and hydrogel systems, can significantly improve monitoring and treatment through enhanced interaction with biological tissues, revolutionizing our chronic inflammation management.

View Article and Find Full Text PDF

The cell membrane, consisting of a phospholipid bilayer, is an important defense system of lactic acid bacteria (LAB) against adverse conditions. However, this membrane gets damaged during the process of spray drying of LAB into powder. In this study, two strains of Lactobacillus bulgaricus L9-7 and L4-2-12 with significantly different survival rates of about 22.

View Article and Find Full Text PDF

Early-stage nonalcoholic fatty liver disease (NAFLD) is a silent condition, with most cases going undiagnosed, potentially progressing to liver cirrhosis and cancer. A non-invasive and cost-effective detection method for early-stage NAFLD detection is a public health priority but challenging. In this study, an adhesive, soft on-skin sensor with low electrode-skin contact impedance for early-stage NAFLD detection is fabricated.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers synthesized a nitrogen-doped carbon nanotube-encased iron nanoparticles (Fe@NCNT) catalyst and applied plasma etching, discovering that nitrogen species from the etching significantly boost activity.
  • * The catalyst showed better oxygen reduction reaction (ORR) performance and stability compared to the standard commercial Pt/C catalyst.
View Article and Find Full Text PDF

Room-temperature sodium-sulfur (RT Na-S) batteries, noted for their low material costs and high energy density, are emerging as a promising alternative to lithium-ion batteries (LIBs) in various applications including power grids and standalone renewable energy systems. These batteries are commonly assembled with glass fiber membranes, which face significant challenges like the dissolution of polysulfides, sluggish sulfur conversion kinetics, and the growth of Na dendrites. Here, we develop an amorphous two-dimensional (2D) iron tin oxide (A-FeSnO) nanosheet with hierarchical vacancies, including abundant oxygen vacancies (Os) and nano-sized perforations, that can be assembled into a multifunctional layer overlaying commercial separators for RT Na-S batteries.

View Article and Find Full Text PDF
Article Synopsis
  • * The rise of flexible electronics is paving the way for more adaptable metasurfaces, which this review examines, including their history, classifications, and innovative design techniques.
  • * The article highlights four significant applications (like imaging and biosensing) and discusses three emerging trends (mechanically reconfigurable, digitally controlled, and conformal metasurfaces) while addressing ongoing challenges and opportunities in the field.
View Article and Find Full Text PDF

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth.

View Article and Find Full Text PDF

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration.

View Article and Find Full Text PDF

With the rapid development of multimedia technology, personnel verification systems have become increasingly important in the security field and identity verification. However, unimodal verification systems have performance bottlenecks in complex scenarios, thus triggering the need for multimodal feature fusion methods. The main problem with audio-visual multimodal feature fusion is how to effectively integrate information from different modalities to improve the accuracy and robustness of the system for individual identity.

View Article and Find Full Text PDF

Efficient construction of proton transport channels in proton exchange membranes maintaining conductivity under varied humidity is critical for the development of fuel cells. Covalent organic frameworks (COFs) hold great potential in providing precise and fast ion transport channels. However, the preparation of continuous free-standing COF membranes retaining their inherent structural advantages to realize excellent proton conduction performance is a major challenge.

View Article and Find Full Text PDF

Since the initial discovery of Ti C a decade ago, there has been a significant surge of interest in 2D MXenes and MXene-based composites. This can be attributed to the remarkable intrinsic properties exhibited by MXenes, including metallic conductivity, abundant functional groups, unique layered microstructure, and the ability to control interlayer spacing. These properties contribute to the exceptional electrical and mechanical performance of MXenes, rendering them highly suitable for implementation as candidate materials in flexible and wearable energy storage devices.

View Article and Find Full Text PDF

The current cardiac pacemakers are battery dependent, and the pacing leads are prone to introduce valve damage and infection, plus a complete pacemaker retrieval is needed for battery replacement. Despite the reported wireless bioelectronics to pace the epicardium, open-chest surgery (thoracotomy) is required to implant the device, and the procedure is invasive, requiring prolonged wound healing and health care burden. We hereby demonstrate a fully biocompatible wireless microelectronics with a self-assembled design that can be rolled into a lightweight microtubular pacemaker for intravascular implantation and pacing.

View Article and Find Full Text PDF

Additive manufacturing, commonly known as 3D printing, allows decentralized drug fabrication of orally administered tablets. Microneedles are comparatively favorable for self-administered transdermal drug delivery with improved absorption and bioavailability. Due to the cross-scale geometric characteristics, 3D-printed microneedles face a significant trade-off between the feature resolution and production speed in conventional layer-wise deposition sequences.

View Article and Find Full Text PDF

With the current expansion of urban areas and industrial development, the increasing discharge of wastewater containing bacteria poses a threat to human health. Although substantial advancements have been made in antibacterial materials, there is still a need for an efficient method that can thoroughly remove bacteria through sterilization and adsorption during wastewater treatment. Here, we report a mussel-inspired antibacterial sponge with outstanding antibacterial efficiency exceeding 95% and a high removal ratio of the bacterial corpses for water purification after contacting for 30 min.

View Article and Find Full Text PDF

Electricity generation from body heat has garnered significant interest as a sustainable power source for wearable bioelectronics. In this work, we report stretchable n-type thermoelectric fibers based on the hybrid of TiCT MXene nanoflakes and polyurethane (MP) through a wet-spinning process. The proposed fibers are designed with a 3D interconnected porous network to achieve satisfactory electrical conductivity (σ), thermal conductivity (κ), and stretchability simultaneously.

View Article and Find Full Text PDF

Reasonably designing and constructing efficient artificial S-mechanism photocatalysts, expanding their application in the field of photocatalytic organic synthesis, have become a hot and challenging topic in the photocatalysis. Herein, a series of coral-like WO@TpPa-H (TpPa-H represents COFs generated by the reaction of 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-H)) composites were successfully prepared by using a simple in-situ encapsulation strategy. Given the internal electric field at the S-scheme interface, WO acts as an oxidative photocatalyst with sufficient positive valence band (VB) position and TpPa-H as a reductive one with enough negative conduction band (CB) position for the efficient amines oxidative coupling to imines.

View Article and Find Full Text PDF

Despite being one of the most promising materials in anode materials, molybdenum sulfide (MoS ) encounters certain obstacles, such as inadequate cycle stability, low conductivity, and unsatisfactory charge-discharge (CD) rate performance. In this study, a novel approach is employed to address the drawbacks of MoS . Carbon polymer dots (CPDs) are incorporated to prepare three-dimensional (3D) nanoflower-like spheres of MoS @CPDs through the self-assembly of MoS 2D nanosheets, followed by annealing at 700 °C.

View Article and Find Full Text PDF