Resistive random access memory (RRAM) has emerged as a promising candidate for next-generation storage technologies due to its simple structure, high running speed, excellent durability, high integration density, and low power consumption. This paper focuses on the application of organic-inorganic hybrid perovskite (OIHP) materials in RRAM by introducing an innovative three-dimensional POPA modification strategy, which is realized by binding octa-amine-polyhedral oligomeric silsesquioxanes (8NH-POSS) onto the side chains of poly(acrylic acid) (PAA), thereby enhancing the material's resilience under elevated temperatures and humidity conditions. POPA cross-links with perovskite grains at crystalline boundaries through multiple -NH and -C═O chemical anchoring sites on its branch chain, enhancing the grain adhesion, optimizing the film quality, and improving the cage structure distribution at the perovskite grain boundaries.
View Article and Find Full Text PDFHollow natural polysaccharide microcapsules have broad applications in drug delivery field due to their excellent biocompatibility and drug loading efficiency. In this paper, pH/near-infrared (NIR) dual-responsive microcapsules composed of hyaluronic acid (HA), chitosan (CS) and hollow CuS (HA/CS/HA@CuS) had been fabricated via a layer-by-layer (LbL) approach. The negative charge, rough surface and hollow structure of microcapsules are very favorable for loading positively charged DOX.
View Article and Find Full Text PDFThe design of multifunctional nanocarriers with enhanced photothermal efficiency is of great significance for the photothermal therapy of cancer. In this study, hollow CuS@gold nanorods/polydopamine (HCuS@AuNRs/PDA) nanohybrids with synergistically enhanced photothermal efficiency were prepared by electrostatic self-assembly method. The high photothermal conversion efficiency of HCuS@AuNRs (55.
View Article and Find Full Text PDFPhotothermal responsive hydrogels are widely used in bionic soft actuators due to their remote-controlled capabilities and flexibility. However, their weak mechanical properties and limited responsiveness hinder their potential applications. To overcome this, we developed an innovative laponite/MXene/PNIPAm (LMPN) nanocomposite hydrogel that is mechanically robust and exhibits excellent photothermally responsive properties based on abundant hydrogen bonds.
View Article and Find Full Text PDFThe unique properties of upconversion nanoparticles (UCNPs) are responsible for their diverse applications in photonic materials, medicine, analytics, and energy conversion. In this study, water-soluble rare-earth upconversion nanomaterials emitting green, yellow, and red light under 1550 nm excitation were synthesized. These nanomaterials were then integrated into water-soluble Kevlar nanofibers (KNFs) to fabricate ultra-thin composite films exhibiting favorable mechanical characteristics.
View Article and Find Full Text PDFEfficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems.
View Article and Find Full Text PDFCapturing and separating carbon dioxide, particularly using porous carbon adsorption separation technology, has received considerable research attention due to its advantages such as low cost and ease of regeneration. In this study, we successfully developed a one-step carbonization activation method using freeze-thaw pre-mix treatment to prepare high-nitrogen-content microporous nitrogen-doped carbon materials. These materials hold promise for capturing and separating CO from complex gas mixtures, such as biogas.
View Article and Find Full Text PDFThe near-infrared (NIR)/pH dual-responsive nanoplatform shows great potential in remote photothermal therapy for tumor on account of the near-infrared window in biological tissue and the mild acidic environment in tumor cells. CuS nanoplatform has become a rising star in the field of photothermal agents due to its excellent NIR responsiveness and photostability. In this work, hollow CuS nanoparticles with high photothermal conversion efficiency (42.
View Article and Find Full Text PDFTraditional polyolefin separators for lithium-ion batteries (LIBs) often experience limited thermal stability and intrinsic flammability, resulting in great safety risks during their usage. Therefore, it is highly important to develop novel flame-retardant separators for safe LIBs with high performance. In this work, we report a flame-retardant separator derived from boron nitride (BN) aerogel with a high BET surface area of 1127.
View Article and Find Full Text PDFFlexible supercapacitors with high power density and long cyclic stability represent a promising candidate to be used as power supplies for portable electronics, but often suffer from the disadvantages of a limited working voltage and rapid self-discharge (spontaneous drop of open-circuit voltage). Here, we design a bilayer heterogeneous poly(ionic liquid) electrolyte (BHPE) consisting of a polycation complex and a polyanion complex with different zeta potentials to suppress the self-discharge of flexible symmetric supercapacitors. The resultant BHPE-based supercapacitors using active carbon/carbon nanotube composite electrodes exhibit a high working potential of 3.
View Article and Find Full Text PDFWound infection causes irregular tissue closure, often with prolonged healing. Traditional therapies based on antibiotic delivery have resulted in reduced therapeutic efficiency and drug resistance. Such features make it highly desirable to develop an antibiotic-free material for wound infection in clinical applications.
View Article and Find Full Text PDFThe 3D supramolecular framework (3D-SF) is constructed in this work through the hydrogen bond assisted self-assembly of spherical dendritic nanopolymer to regulate the flexibility, stability, and resistive switching (RS) performance of perovskite resistive random-access memory (RRAM). Herein, the 3D-SF network acts as the perovskite crystallization template to regulate the perovskite crystallization process due to its coordination interaction of functional groups with the perovskite grains, presenting the uniform, pinhole-free, and compact perovskite morphology for stable flexible RRAM. The 3D-SF network in situ stays at the perovskite intergranular boundaries to crosslink the perovskite grains.
View Article and Find Full Text PDFA sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood film with excellent mechanical properties, ion conductivity and thermal stability is fabricated for high-performance lithium ion batteries. Using the modified natural wood film as a separator, the fabricated symmetric cell exhibits a more stable and lower plating/stripping voltage for Li than that of the cell with a commercialized polypropylene (PP) separator.
View Article and Find Full Text PDFThe intergranular interface modification of organic-inorganic hybrid perovskites (OHP) is an important issue to regulate the flexibility, stability, and resistive switching (RS) performance of resistive random-access memories (RRAMs). A novel strategy of polymer additives for OHP intergranular interface modification is explored in this work with the polyanionic backbone to improve the distribution of cage-shaped cavity molecules at the perovskite grain boundaries. Specifically speaking, poly(1-adamantylammonium acrylate) (PADAm) is first synthesized through the acid-base reaction of polyacrylic acid with 1-adamantylamine to simultaneously realize the introduction of a cage-shaped cavity molecule and the polyanionic backbone.
View Article and Find Full Text PDFRemotely multi-responsive chitosan (CS) hydrogels holds great promise in the design of anticancer drug carriers. In this paper, near-infrared (NIR)-/pH-dual responsive CS/β-GP/TiC@AuNRs hybrid hydrogel was prepared based on CS/β-glycerol phosphate disodium salt (β-GP) crosslinking system embedded with NIR-responsive TiC@gold nanorods (AuNRs) nanosheets. Excess β-GP promoted the formation of massive electronegative cavities, which endowed hybrid hydrogels with high drug loading efficiency for electropositive DOX (around 88.
View Article and Find Full Text PDFThe multifunctional photoelectronic devices are recently attracting much more attention due to their potential enlarged applications. The flexible stretchable electrothermally/photothermally dual-driven heaters for all-weather wearable thermal management are presented in this work with nano-embedded hierarchical CuS-coated PET fabrics. Herein, the hierarchical nano-embedded CuS film is fabricated via a simple chemical bath method for high electrical conductivity and highly efficient inelastic collision of electro/photo-generated carriers.
View Article and Find Full Text PDFFabrics are often used as freestanding substrates for energy storage devices owing to their hierarchical porous structure and excellent mechanical flexibility. However, it is still a challenge to achieve a high loading mass of electroactive materials for outstanding electrochemical performance. In this work, with the help of high swelling property of chitosan, the chitosan-viscose nonwoven fabric (CVF) is successfully reconstructed to expand its specific surface area for flexible conductive substrates in the supercapacitors.
View Article and Find Full Text PDFDental plaque biofilms are believed to be one of the principal virulence factors in periodontitis resulting in tooth loss. Traditional mouthwashes are limited due to the continuous flow of saliva and poor drug penetration ability in the biofilm. Herein, we fabricated an antibiotic delivery platform based on natural polysaccharides (chitosan and cyclodextrin) as a novel mouthwash for the topical cavity delivery of minocycline.
View Article and Find Full Text PDFA monolithic supercapacitor electrode of a KNiCoPO·HO-graphene composite hydrogel supported on Ni foam (KNCP-GH/NF) is first prepared by a one-step hydrothermal method, which achieves notable improvements in the electrode surface area and mass-loading of active materials. The KNCP-GH/NF electrode enjoys a hierarchical open-porous structure, where the KNCP-GH composite hydrogel fills in the voids in NF and the porous graphene hydrogel (GH) simultaneously provides a large support surface for growing active KNCP nanoflowers. Accordingly, the KNCP-GH/NF electrode exhibits a strikingly high capacity of 3240 mC cm (876 C g) at 2 mA cm and a satisfactory rate performance with 78.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) are regarded as promising candidates for future renewable energy production. High-density defects in the perovskite films, however, lead to unsatisfactory device performances. Here, poly(propylene glycol) bis(2-aminopropyl ether) (PEA) additive is utilized to passivate the trap states in perovskite.
View Article and Find Full Text PDFTiC MXenes, a novel two-dimensional material, have attracted lots of attention in biomedical filed for its large surface area and excellent near-infrared (NIR) responsiveness. In this paper, a pH/near-infrared (NIR) multi-responsive drug delivery platform consisted of hollow hydroxyapatite (HAP), chitosan (CS)/hyaluronic acid (HA) multilayers, gold nanorods (AuNRs) and MXene had been fabricated via a layer-by-layer (LbL) approach. Chitosan/hyaluronic acid multilayers were deposited on the surface of hollow HAP to retard the burst release of DOX in the initial delivery stage.
View Article and Find Full Text PDFWearable non-invasive glucose sensors that can provide human a painless and portable means to monitor their blood glucose and manage their health condition draw great attentions, recently. Non-invasive human glucose sensors by detecting glucose in interstitial fluid (ISF) extracted through a reverse iontophoresis (RI) approach have been widely investigated, but the current challenges are their complex structure and instability for continuous monitor. Herein, we demonstrate a simple two-electrode non-invasive blood glucose sensor, which is fabricated by using graphene/carbon nanotubes/glucose oxidase composite textile and graphene/carbon nanotube/silver/silver chloride composite textile as the working electrode and counter electrode, respectively.
View Article and Find Full Text PDFBattery-type materials (e.g., transition metal phosphates) have been intensely explored in supercapacitors due to their rich electroactive sites and high theoretical capacity.
View Article and Find Full Text PDFWe report a facile, rapid, phase-transfer-assisted process to prepare Ag nanoparticles (AgNP) loaded graphene oxide (GO) nanocomposite, by using cysteine as a highly-effective phase transfer agent for AgNP movement from organic phase to water and subsequently as a covalent linkage for immobilizing AgNP on GO. The obtained c-Ag/GO nanocomposite possesses high nanoparticle loading efficiency, small particle size and monodispersity, strong binding force and good water dispersibility, which endow it with great potential in a variety of bio-applications. To illustrate potentail application, c-Ag/GO and its derivatives c-Ag/rGO were used for antibiosis and biosensing, respectively.
View Article and Find Full Text PDF