Publications by authors named "Shaojun Du"

Article Synopsis
  • Molecular chaperones are essential for maintaining protein balance, and loss of Smyd1b in zebrafish leads to disorganized muscle fibers and increased heat shock protein expression.
  • RNA sequencing revealed that the upregulated heat shock proteins, particularly Hsp70s, are important for myosin folding and assembly in muscle cells.
  • Additionally, Hsf1 is crucial for activating heat shock gene expression during stress, with its absence exacerbating muscle issues in Smyd1b mutants and decreasing survival under heat stress.
View Article and Find Full Text PDF

Triploid Pacific oyster Crassostrea gigas exhibits notable differences in fecundity, with the majority being sterile individuals, referred to as female β, which produce few oocytes, while a minority are fertile individuals, referred to as female α, which produce abundant oocytes. However, the molecular mechanisms underlying these differences in triploid fecundity remain poorly understood. CDC42 has been implicated in processes related to increased DNA damage and genomic instability.

View Article and Find Full Text PDF

Smyd1, a member of the Smyd lysine methyltransferase family, plays an important role in myofibrillogenesis of skeletal and cardiac muscles. Loss of Smyd1b (a Smyd1 ortholog) function in zebrafish results in embryonic death from heart malfunction. encodes two isoforms, Smyd1b_tv1 and Smyd1b_tv2, differing by 13 amino acids due to alternative splicing.

View Article and Find Full Text PDF

Unlabelled: Mollusca exhibit remarkable diversity in shell coloration, attributed to the presence of melanin, a widely distributed pigment with various essential roles, such as mechanical strengthening, antioxidation and thermoregulation. However, the regulatory network governing melanogenesis and melanin transport in molluscs remains poorly understood. In this study, we conducted a systematic analysis of melanin distribution and transport in the Pacific oyster, utilizing light microscopy and high-resolution transmission electron microscopy.

View Article and Find Full Text PDF

Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells.

View Article and Find Full Text PDF

Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins.

View Article and Find Full Text PDF

The molluscan family Ostreidae, commonly known as oysters, is an important molluscan group due to its economic and ecological importance. In recent years, an abundance of genomic data of Ostreidae species has been generated and available in public domain. However, there is still a lack of a high-efficiency database platform to store and distribute these data with comprehensive tools.

View Article and Find Full Text PDF

Sex determination in many fish species is remarkably plastic and temperature sensitive. Nile tilapia display a genetic sex-determination system (XX/XY). However, high-temperature treatment during critical thermosensitive periods can induce XX females into XXm pseudo-males, and this phenomenon is termed temperature-induced sex reversal (TISR).

View Article and Find Full Text PDF

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P.

View Article and Find Full Text PDF

The oyster Ostrea denselamellosa is a live-bearing species with a sharp decline in the natural population. Despite recent breakthroughs in long-read sequencing, high quality genomic data are very limited in O. denselamellosa.

View Article and Find Full Text PDF

Mactra veneriformis (Bivalvia: Mactridae) is a bivalve mollusk of major economic importance in China. Decreased natural yields of M. veneriformis have led to an urgent need for genomic resources.

View Article and Find Full Text PDF

The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive.

View Article and Find Full Text PDF

Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Myoblast fusion is crucial for developing and regenerating skeletal muscles, with discoveries in Drosophila revealing an asymmetric synapse mechanism for this process.
  • In zebrafish, fusion of fast muscle cells is facilitated by an invasive F-actin structure and involves specific cell adhesion molecules, particularly Jam2a, which plays a central organizing role.
  • The study highlights the significance of the Arp2/3 complex and its promoting factors in forming this structure, while also indicating that the fusion process requires the merging of microdomains containing fusogenic proteins with invasive protrusions.
View Article and Find Full Text PDF

XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells.

View Article and Find Full Text PDF

To meet the requirements of fiber laser applications under extreme temperatures or when there is a large temperature difference, it is necessary to develop fiber lasers able to operate in a wide temperature range. At present, there is a lack of reports on high-power fiber lasers that can operate in a wide temperature range with low power fluctuations. Thus, we designed a 1 kW fiber oscillator that can operate in a wide temperature range through temperature-related rate equations.

View Article and Find Full Text PDF

Lifeact-GFP is a frequently used molecular probe to study F-actin structure and dynamic assembly in living cells. In this study, we generated transgenic zebrafish models expressing Lifeact-GFP specifically in cardiac muscles to investigate the effect of Lifeact-GFP on heart development and its application to study cardiomyopathy. The data showed that transgenic zebrafish with low to moderate levels of Lifeact-GFP expression could be used as a good model to study contractile dynamics of actin filaments in cardiac muscles .

View Article and Find Full Text PDF

Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells.

View Article and Find Full Text PDF

XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells.

View Article and Find Full Text PDF

Skeletal and cardiac muscles are striated myofibers that contain highly organized sarcomeres for muscle contraction. Recent studies revealed that Smyd1, a lysine methyltransferase, plays a key role in sarcomere assembly in heart and trunk skeletal muscles. However, Smyd1 expression and function in craniofacial muscles are not known.

View Article and Find Full Text PDF

Paramyosin is a key component of thick filaments in invertebrate muscles. In this study, we isolated the full length cDNA of paramyosin from Pacific oyster (Crassostrea gigas), and determined its pattern of expression during myogenesis. The full length paramyosin (CgPM) cDNA contains an open reading frame (ORF) of 2586 bp encoding a 861-amino acid protein.

View Article and Find Full Text PDF

Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white.

View Article and Find Full Text PDF

Pacific oyster (Crassostrea gigas) is one of the most widely cultivated shellfish species in the world. Because of its economic value and complex life cycle involving drastic changes from a free-swimming larva to a sessile juvenile, C. gigas has been used as a model for developmental, environmental, and aquaculture research.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate post-transcription gene expression by targeting genes and play crucial roles in diverse biological processes involving body color formation. However, miRNAs and miRNA-targets underlying shell color polymorphism remain largely unknown in mollusca. Using four shell colors full-sib families of the Pacific oyster Crassostrea gigas, we systematically identified miRNAs and miRNA-targets in the mantles, which organ could produce white, golden, black or partially pigmented shell.

View Article and Find Full Text PDF