Small molecules capable of modulating methionine adenosyltransferase 2A (MAT2A) are of significant interest in precise cancer therapeutics. Herein, we raised the hole-electron Coulombic attraction as a reliable molecular descriptor for predicting the reactive oxygen generation capacity of MAT2A inhibitors, based on which we discovered compound as a sonically activated degrader of MAT2A. Upon sonication, can generate reactive oxygen species to specifically degrade cellular MAT2A via rapid oxidative reactions.
View Article and Find Full Text PDFPARP7 has emerged as a promising anti-tumor target due to its crucial roles in nucleic acid sensing and immune regulation. Herein, we explored the structural-activity relationship of tricyclic PARP7 inhibitors containing a hexahydropyrazino[1,2-d]pyrido[3,2-b][1,4]oxazine motif. The effects of the chirality of the fused rings, the group conjugated to the fused rings, and the size of the linker on PARP7 inhibition were fully investigated.
View Article and Find Full Text PDF