Epithelial Na channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (α mice). On a normal Na control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and α mice.
View Article and Find Full Text PDFThe epithelial Na channel (ENaC) resides on the apical surfaces of specific epithelia in vertebrates and plays a critical role in extracellular fluid homeostasis. Evidence that ENaC senses the external environment emerged well before the molecular identity of the channel was reported three decades ago. This article discusses progress toward elucidating the mechanisms through which specific external factors regulate ENaC function, highlighting insights gained from structural studies of ENaC and related family members.
View Article and Find Full Text PDFHypertension affects one billion people worldwide and is the most common risk factor for cardiovascular disease, yet a comprehensive picture of its underlying genetic factors is incomplete. Amongst regulators of blood pressure is the renal outer medullary potassium (ROMK) channel. While select ROMK mutants are prone to premature degradation and lead to disease, heterozygous carriers of some of these same alleles are protected from hypertension.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
June 2024
The epithelial Na channel (ENaC) γ subunit is essential for homeostasis of Na, K, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (P), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (RKRR, in the mouse γ subunit).
View Article and Find Full Text PDFThe ENaC gamma subunit is essential for homeostasis of Na , K , and body fluid. Dual subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (P ), . Cleavage proximal to the tract occurs at a furin recognition sequence ( RKRR in mouse).
View Article and Find Full Text PDFEpithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology.
View Article and Find Full Text PDFEpithelial Na channels (ENaCs) and related channels have large extracellular domains where specific factors interact and induce conformational changes, leading to altered channel activity. However, extracellular structural transitions associated with changes in ENaC activity are not well defined. Using crosslinking and two-electrode voltage clamp in Xenopus oocytes, we identified several pairs of functional intersubunit contacts where mouse ENaC activity was modulated by inducing or breaking a disulfide bond between introduced Cys residues.
View Article and Find Full Text PDFBackground: The epithelial Na channel (ENaC) is intrinsically linked to fluid volume homeostasis and blood pressure. Specific rare mutations in , , and , genes encoding the α, β, and γ subunits of ENaC, respectively, are associated with extreme blood pressure phenotypes. No associations between blood pressure and , which encodes the δ subunit of ENaC, have been reported.
View Article and Find Full Text PDFKidney organoids derived from human or rodent pluripotent stem cells have glomerular structures and differentiated/polarized nephron segments. Although there is an increasing understanding of the patterns of expression of transcripts and proteins within kidney organoids, there is a paucity of data regarding functional protein expression, in particular on transporters that mediate the vectorial transport of solutes. Using cells derived from kidney organoids, we examined the functional expression of key ion channels that are expressed in distal nephron segments: the large-conductance Ca-activated K (BK) channel, the renal outer medullary K (ROMK, Kir1.
View Article and Find Full Text PDFThe epithelial Na channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2021
The epithelial Na channel (ENaC) promotes the absorption of Na in the aldosterone-sensitive distal nephron, colon, and respiratory epithelia. Deletion of genes encoding subunits of ENaC results in early postnatal mortality. Here, we present the initial characterization of a mouse with dramatically suppressed expression of the ENaC γ-subunit.
View Article and Find Full Text PDFBK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice.
View Article and Find Full Text PDFEpithelial Na channel (ENaC)-mediated Na transport has a key role in the regulation of extracellular fluid volume, blood pressure, and extracellular [K]. Among the thousands of human ENaC variants, only a few exist whose functional consequences have been experimentally tested. Here, we used the oocyte expression system to investigate the functional roles of four nonsynonymous human ENaC variants located within the β7-strand and its adjacent loop of the α-subunit extracellular β-ball domain.
View Article and Find Full Text PDFThe epithelial Na channel (ENaC) possesses a large extracellular domain formed by a β-strand core enclosed by three peripheral α-helical subdomains, which have been dubbed thumb, finger, and knuckle. Here we asked whether the ENaC thumb domains play specific roles in channel function. To this end, we examined the characteristics of channels lacking a thumb domain in an individual ENaC subunit (α, β, or γ).
View Article and Find Full Text PDFCystic fibrosis (CF) remains the most lethal genetic disease in the Caucasian population. However, there is great variability in clinical phenotypes and survival times, even among patients harboring the same genotype. We identified five patients with CF and a homozygous F508del mutation in the CFTR gene who were in their fifth or sixth decade of life and had shown minimal changes in lung function over a longitudinal period of more than 20 years.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
November 2016
Mutations in genes encoding subunits of the epithelial Na channel (ENaC) can cause early onset familial hypertension, demonstrating the importance of this channel in modulating blood pressure. It remains unclear whether other genetic variants resulting in subtler alterations of channel function result in hypertension or altered sensitivity of blood pressure to dietary salt. This study sought to identify functional human ENaC variants to examine how these variants alter channel activity and to explore whether these variants are associated with altered sensitivity of blood pressure to dietary salt.
View Article and Find Full Text PDFThe extracellular regions of epithelial Na(+) channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na(+) (Na(+) self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na(+) channel function and surface expression, and impairs subunit maturation.
View Article and Find Full Text PDFSodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
March 2014
Epithelial Na(+) channel (ENaC) subunits (α, β, and γ) found in functional complexes are translated from mature mRNAs that are similarly processed by the inclusion of 13 canonical exons. We examined whether individual exons 3-12, encoding the large extracellular domain, are required for functional channel expression. Human ENaCs with an in-frame deletion of a single α-subunit exon were expressed in Xenopus oocytes, and their functional properties were examined by two-electrode voltage clamp.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2013
Epithelial Na(+) channel (ENaC) mutations are associated with several human disorders, underscoring the importance of these channels in human health. Recent human genome sequencing projects have revealed a large number of ENaC gene variations, several of which have been found in individuals with salt-sensitive hypertension, cystic fibrosis, and other disorders. However, the functional consequences of most variants are unknown.
View Article and Find Full Text PDFExtracellular Zn(2+) activates the epithelial Na(+) channel (ENaC) by relieving Na(+) self-inhibition. However, a biphasic Zn(2+) dose response was observed, suggesting that Zn(2+) has dual effects on the channel (i.e.
View Article and Find Full Text PDFEpithelial Na(+) channels (ENaCs) play an essential role in the regulation of body fluid homeostasis. Certain transition metals activate or inhibit the activity of ENaCs. In this study, we examined the effect of extracellular Cu(2+) on human ENaC expressed in Xenopus oocytes and investigated the structural basis for its effects.
View Article and Find Full Text PDFThe activity of the epithelial sodium channel (ENaC) is modulated by multiple external factors, including proteases, cations, anions and shear stress. The resolved crystal structure of acid-sensing ion channel 1 (ASIC1), a structurally related ion channel, and mutagenesis studies suggest that the large extracellular region is involved in recognizing external signals that regulate channel gating. The thumb domain in the extracellular region of ASIC1 has a cylinder-like structure with a loop at its base that is in proximity to the tract connecting the extracellular region to the transmembrane domains.
View Article and Find Full Text PDF