We report an electrophotocatalytic process that enables the thiocyanation and sulfonylation/cyclization of alkenes. It is applicable to a wide range of unactivated alkenes, using the inexpensive photocatalyst 2,4,6-triphenylpyrylium tetrafluoroborate (TPPT) to produce a diverse array of heterocycles containing sulfonyl and thiocyano groups with good functional group tolerance. The protocol operates under mild, chemical oxidant- and transition-metal-free, with a broad scope of substrates.
View Article and Find Full Text PDFThree hybrid electrochemical protocols, which involve the energy transfer, direct photolysis and N-hydroxyphthalimide catalyst, respectively, are presented for the selenylation/cyclization of the fragile substrates of 3-aza-1,5-dienes with diorganyl diselenides to afford 3-selenomethyl-4-pyrrolin-2-ones. The two electrophotocatalytic reactions and the indirect electrolysis one are both regioselective and external-oxidant- and transition-metal-free, and are associated with a broad substrate scope and high Se-economy, and all three methods are amenable to gram-scale syntheses, late-stage functionalizations, sunlight-induced experiments and all-solar-driven syntheses.
View Article and Find Full Text PDFRecent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS).
View Article and Find Full Text PDFNkx2.3, a transcription factor, plays important roles in various developmental processes. However, the mechanisms underlying ' regulation of pouch and pharyngeal arch development in zebrafish remain unclear.
View Article and Find Full Text PDFChem Commun (Camb)
December 2023
A domino reaction of -alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.
View Article and Find Full Text PDFAn electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available -vinylacrylamides, and it is readily scalable to the Gram scale.
View Article and Find Full Text PDFIntroduction: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia.
View Article and Find Full Text PDFThe current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers.
View Article and Find Full Text PDFBackground: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) play an important regulatory role in various diseases. However, the role of lncRNAs in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIPC) is still unknown. The lncRNA profile of rat cortical astrocytes pretreated with ischemic preconditioning was analyzed by high-throughput sequencing.
View Article and Find Full Text PDFAbnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of many vascular remodeling diseases. Because long non-coding RNAs (lncRNAs) play a critical role in cardiovascular diseases, we analyzed the key lncRNAs that regulate VSMC proliferation. Microarray analysis identified 2,643 differentially expressed lncRNAs (DELs) and 3,720 differentially expressed coding genes (DEGs) between fetal bovine serum (FBS) starvation-induced quiescent human aortic smooth muscle cells (HASMCs) and platelet-derived growth factor-BB (PDGF-BB)-stimulated proliferative HASMCs.
View Article and Find Full Text PDFThis study is to identify the differentially expressed miRNAs in testicular tissues of rats with hyperuricaemia-induced male infertility. We found that the hyperuricaemia model group had significantly increased serum uric acid, while significantly decreased sperm concentration and motile sperm percentage than normal group (p < .05).
View Article and Find Full Text PDFWheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and accession T093 (highly PHS-resistant). Three -derived quantitative trait loci (QTLs), , , and , were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers.
View Article and Find Full Text PDFIn the central nervous system, nuclear factor erythroid-2-related factor 2 (Nrf2) protects neurons from oxidant injury, thereby ameliorating neurodegeneration. We explored the key circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) involved in Nrf2-induced neuroprotection. We used microarrays to examine the circRNAs (DEcircRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) differentially expressed between Nrf2 (+/+) and Nrf2 (-/-) mice and identified DEcircRNA/DElncRNA-miRNA-DEmRNA interaction networks.
View Article and Find Full Text PDFCircular RNAs (circRNAs) have a critical regulatory function in human glioma. However, novel circRNAs related to different pathological grades of glioma and their crucial potential function are worth screening and prediction. CircRNA expression profiling was performed for 6 paired high- and low-grade glioma tissues and 5 adjacent normal brain tissues through next-generation sequencing.
View Article and Find Full Text PDFPodocyte injury is the main cause of proteinuria in lupus nephritis (LN). Nestin, an important cytoskeleton protein, is expressed stably in podocytes and is associated with podocyte injury. However, the role of nestin in the pathogenesis of proteinuria in LN remains unclear.
View Article and Find Full Text PDFVascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown.
View Article and Find Full Text PDFBackground: Nrf2 (nuclear factor, erythroid 2 like 2) is believed to play a major role in neurodegenerative diseases. The present study attempts to investigate the hippocampal circRNA and lncRNA expression profiles associated with Nrf2-mediated neuroprotection.
Methods: The hippocampal mRNA, circRNA and lncRNA expression profiles of Nrf2 (-/-) mice were determined by a microarray analysis.
NF-κB-mediated inflammatory phenotypic switching of vascular smooth muscle cells (VSMCs) plays a central role in atherosclerosis and neointimal formation. However, little is known about the roles of circRNAs in the regulation of NF-κB signaling. Here, we identify the involvement of circ-Sirt1 that was one of transcripts of SIRT1 host gene in VSMC inflammatory response and neointimal hyperplasia.
View Article and Find Full Text PDFBackground/aims: The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a protective role in both acute neuronal damage and chronic neurodegeneration-related oxidative stress. Circular RNAs (circRNAs) are involved with various diseases in the central nervous system (CNS). This study aimed to identify the key circRNAs involved in Nrf2-neuroprotection against oxidative stress.
View Article and Find Full Text PDFNuclear factor erythroid 2 like 2 (Nrf2) functions as a neuroprotective agent in Parkinson's disease (PD). This study aimed to investigate the key long non-coding RNAs (lncRNAs) correlated with Nrf2, which might provide valuable information for the exploration of pathogenesis of PD. The lncRNA and mRNA expression profiling of substantia nigra and corpus striatum of Nrf2 (-/-) mice model was obtained from microarray analysis.
View Article and Find Full Text PDFRationale: Vascular smooth muscle cell (VSMC) survival under stressful conditions is integral to promoting vascular repair, but facilitates plaque stability during the development of atherosclerosis. The cytoskeleton-associated smooth muscle (SM) 22α protein is involved in the regulation of VSMC phenotypes, whereas the pentose phosphate pathway plays an essential role in cell proliferation through the production of dihydronicotinamide adenine dinucleotide phosphate.
Objective: To identify the relationship between dihydronicotinamide adenine dinucleotide phosphate production and SM22α activity in the development and progression of vascular diseases.
MicroRNAs are phenotypic regulators of vascular smooth muscle cells (VSMCs). In this paper, we demonstrate that miR-146a targets the Krüppel-like factor 4 (KLF4) 3'-untranslated region and has an important role in promoting VSMC proliferation in vitro and vascular neointimal hyperplasia in vivo. Silencing of miR-146a in VSMCs increases KLF4 expression, whereas overexpression of miR-146a decreases KLF4 levels.
View Article and Find Full Text PDF