The leaves of Festuca arundinacea can excrete cadmium (Cd) out onto the leaf surface, leading to a bio-pump phytoremediation strategy based on "root uptake-root-to-leaf translocation-leaf excretion". However, the bio-bump efficiency of soil Cd is a limiting factor for the implementation of this novel technology. Bio-bump remediation involves the bioprocess of plant root uptake from soil, root-to-leaf translocation, and leaf hydathode excretion.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2022
Phytoextraction strategy by harvesting dead leaves provides continuous phytoremediation and a great saving in disposal cost of hazardous plant residues. This strategy is entirely dependent upon the amount of cadmium (Cd) accumulated in dead leaves. However, it is unknown that whether the leaf Cd accumulation is associated with its senescence and how to regulate its Cd accumulation.
View Article and Find Full Text PDFPhytoextraction by harvesting dead leaves is a novel cadmium (Cd) phytoremediation strategy in tall fescue (Festuca arundinacea), which provides feasibility for the phytoremediation of Cd-polluted soils and cleaner food production. The highest Cd in dead leaves is the result of Cd accumulation during the process of leaf senescence. However, it is not known the mechanism of Cd accumulation during the leaf senescence, which limits the phytoextraction efficiency of this technology.
View Article and Find Full Text PDFPhytoexcretion is a novel strategy to remediate cadmium (Cd) pollution by leaf excretion in tall fescue (Festuca arundinacea), which involves the processes of Cd leaf excretion, root-to-leaf translocation, and root uptake. A hydroponic experiment was designed to investigate a series of 11 zinc (Zn) concentrations on Cd leaf excretion in tall fescue under 75 μM Cd stress. The results showed that the promotions of Zn on Cd leaf excretion, root-to-leaf translocation, and leaf accumulation were concentration-dependent in tall fescue.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.