We designed and fabricated what we believe to be a novel dual-parameter fiber optic sensor for simultaneous measurement of temperature and strain, which was composed of a femtosecond laser inscribed fiber Bragg grating (FBG), three segments of a single-mode fiber (SMF), and two segments of a multimode fiber (MMF), forming a SMF-MMF-FBG-MMF-SMF structure. The FBG and Mach-Zehnder interferometer (MZI) were present in this structure so that the changes of the temperature and strain parameters can be sensed by the shifts of the reflection center wavelength of the FBG and the interference valley wavelength of the MZI. We simulated the light field distribution of the sensor structure, compared the shapes of the interference spectra formed by the MZI structure with different sensing arm lengths of 25, 35, and 45 mm, and analyzed the spectra in the spatial frequency domain.
View Article and Find Full Text PDF