Both microplastics and antibiotics are commonly found contaminants in aquatic ecosystems. Microplastics have the ability to absorb antibiotic pollutants in water, but the specific adsorption behavior and mechanism are not fully understood, particularly in relation to the impact of microplastics on toxicity in aquatic environments. We review the interaction, mechanism, and transport of microplastics and antibiotics in water environments, with a focus on the main physical characteristics and environmental factors affecting adsorption behavior in water.
View Article and Find Full Text PDFThe increasing presence of fluoroquinolone (FQ) antibiotics in aquatic environments is a growing concern due to their widespread use, negatively impacting aquatic organisms. This paper provides an overview of the environmental distribution, sources, fate, and both single and mixed toxicity of FQ antibiotics in aquatic environments. It also examines the accumulation of FQ antibiotics in aquatic organisms and their transfer into the human body through the food chain.
View Article and Find Full Text PDF: despite evidence for mutually reinforcing effects of serum uric acid (SUA) and lipids, the effects of uric levels on pancreatic steatosis are not well-established. In this study, the relationship between low concentrations of uric acid and pancreatic steatosis was evaluated. : forty C57BL/6J mice were fed a diet of high uric acid (HU), high fat (HF), high uric acid and high fat (HUHF), and normal control (NC) (10 mice in each group).
View Article and Find Full Text PDFBackground: Prostate biopsies are mainly performed through transrectal or perineal approaches, while ultrasound probes are located in the rectum for guidance. However, reports on the use of perineal ultrasound-guided transperineal prostate biopsy (PG-TPPB) are few.
Methods: A retrospective case-control study was designed.
Chemical upgrading of waste plastics is currently one of the most important methods for addressing plastic pollution. In comparison to the current methods of incineration or landfill, chemical upgrading enables the utilization of carbon and hydrogen elements in waste plastics as resources. This process strongly relies on efficient catalysts and reaction systems.
View Article and Find Full Text PDFPurpose: This study explored the use of transthoracic lung ultrasound for evaluating COVID-19 patients, compared it with computed tomography (CT), and examined its effectiveness using 8 and 12 lung regions.
Methods: A total of 100 patients with COVID-19 and 40 healthy volunteers were assessed using 12 regions (bilateral upper/lower regions of the anterior/lateral/posterior chest) and simplified 8 zones (bilateral upper/lower regions of the anterior/lateral chest) transthoracic lung ultrasound. The relationships between ultrasound, CT, and clinical indicators were analyzed to evaluate the diagnostic value of ultrasound scores in COVID-19.
Metal-organic frameworks (MOFs) as precursors for catalysts has drawn growing attentions. In this study, heterojunction CoO-CuO doped carbon materials (noted as CoO-CuO@CN) were prepared by direct carbonization of CuCo-MOF in air. It was found that the CoO-CuO@CN-2 exhibited excellent catalytic activity with the highest Oxytetracycline (OTC) degradation rate of 0.
View Article and Find Full Text PDFBackground: Intrauterine chronic hypoxia (ICH) can lead to pancreatic dysmetabolism in offspring. This study aimed to determine the changes in islet function of offspring through a rat ICH model and detect the factors affecting islet function.
Methods: Twenty couples of healthy Sprague - Dawley adult rats were randomly mated, and the pregnant rats were randomly allocated to ICH and normal control (NC) groups.
Fluoroquinolone antibiotics are widely used in human and veterinary medicine and are ubiquitous in the environment worldwide. This paper recapitulates the occurrence, fate, and ecotoxicity of fluoroquinolone antibiotics in various environmental media. The toxicity effect is reviewed based on in vitro and in vivo experiments referring to many organisms, such as microorganisms, cells, higher plants, and land and aquatic animals.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
September 2023
Purpose: Superparamagnetic iron oxide nanoparticles (SPION) are excellent magnetic resonance imaging (MRI) contrast agents. Mucin 4 (MUC4) acts as pancreatic cancer (PC) tumor antigen and influences PC progression. Small interfering RNAs (siRNAs) are used as a gene-silencing tool to treat a variety of diseases.
View Article and Find Full Text PDFBimetallic MOFs have recently emerged as promising materials for wastewater treatment based on advanced oxidation processes. Herein, a new bimetallic MOF (FeCu-MOF) was fabricated by hydrothermal process. The structural, morphological, compositional and physicochemical properties of the as-synthesized bimetallic FeCu-MOF were characterized by XRD, FT-IR, SEM, TEM, BET, and XPS.
View Article and Find Full Text PDFAlthough the mass production of synthetic plastics has transformed human lives, it has resulted in waste accumulation on the earth. Here, we report a low-temperature conversion of polyethylene into olefins. By mixing the polyethylene feed with rationally designed ZSM-5 zeolite nanosheets at 280 °C in flowing hydrogen as a carrier gas, light hydrocarbons (C-C) were produced with a yield of up to 74.
View Article and Find Full Text PDFIn many reactions restricted by water, selective removal of water from the reaction system is critical and usually requires a membrane reactor. We found that a simple physical mixture of hydrophobic poly(divinylbenzene) with cobalt-manganese carbide could modulate a local environment of catalysts for rapidly shipping water product in syngas conversion. We were able to shift the water-sorption equilibrium on the catalyst surface, leading to a greater proportion of free surface that in turn raised the rate of syngas conversion by nearly a factor of 2.
View Article and Find Full Text PDFCatalytic reactions are severely restricted by the strong adsorption of product molecules on the catalyst surface, where promoting desorption of the product and hindering its re-adsorption benefit the formation of free sites on the catalyst surface for continuous substrate conversion. A solution to this issue is constructing a robust nanochannel for the rapid escape of products. We demonstrate here that MFI zeolite crystals with a short b-axis of 90-110 nm and a finely controllable microporous environment can effectively boost the Fischer-Tropsch synthesis to olefins by shipping the olefin molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
Selective hydrogenation of phenol is promising for the utilization of renewable lignocellulose and production of cyclohexanone that usually relies on petroleum, but it is challenging to simultaneously achieve high activity and selectivity. Herein, we report an amino-functionalized nanoporous polymer stabilized palladium nanoparticle catalyst, which is prepared via a one-pot co-polymerization method, as highly active and selective catalysts for the phenol hydrogenation, giving cyclohexanone selectivity over 99.5% with full conversion of phenol under mild reaction conditions without any soluble additives.
View Article and Find Full Text PDFElectronic waste is the fastest growing waste stream and one of the most significant constituents is electronic plastics. In this study, the combustion kinetic of typical electronic plastic waste-television set (TV) plastic shell-was investigated using two basic kinetic methods. The reaction mechanism and kinetic compensation effect were probed as well.
View Article and Find Full Text PDFSeparating cathode material and Al foil from spent lithium-ion batteries (LIBs) is a critical step for LIBs recycling. As compared to chemical dissolving and decomposition, the pyrolysis pretreatment is an alternative and simple method. In this work, the pyrolysis kinetics of cathode material were comparatively studied using various isoconversional methods, including Flynn-Wall-Ozawa (FWO), Friedman, Kissinger-Akahira-Sunose, Starink, Tang, and Boswell.
View Article and Find Full Text PDFMicroplastics (MPs) have become a global environmental pollutant because of their unique properties. The extensive MP toxicity reports have focused on the aquatic environment, while the pervasive MP contamination in the soil and air has largely been overlooked. This review summarizes the abundance, sources and transport of MPs in different environments.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2020
Thermal treatment offers an alternative method for the separation of Al foil and cathode materials during spent lithium-ion batteries (LIBs) recycling. In this work, the pyrolysis behavior of cathode from spent LIBs was investigated using advanced thermogravimetric Fourier transformed infrared spectroscopy coupled with gas chromatography-mass spectrometer (TG-FTIR-GC/MS) method. The fate of fluorine present in spent batteries was probed as well.
View Article and Find Full Text PDFThe interactions between microplastics (MPs) and aquatic organisms are becoming increasingly frequent due to the extensive distribution of MPs in aquatic environments. MPs from the aquatic environment tend to accumulate and move through living organisms. Therefore, MPs can affect human health though the food chain and human consumption.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2019
Organophosphorus flame retardants (OPFRs) are increasingly being applied as flame retardants due to their unique properties. OPFRs are commonly detected in various environmental matrices, and organisms are extensively exposed to them. Considering the adverse effects of OPFRs, many researchers have devoted their attention to environmental risk assessments.
View Article and Find Full Text PDFIn this study, for the first time, we describe the single step synthesis of a Cu particle-doped cobalt-based metal-organic framework (Cu@Co-MOF) using a hydrothermal method. The as-prepared materials were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy-energy disperse spectroscopy, thermogravimetry, and X-ray photoelectron spectroscopy, which confirmed the incorporation of zero-valent copper on the surface of the Co-MOFs. The heterogeneous catalytic activity of Cu@Co-MOFs was tested to activate peroxymonosulfate (PMS) for the removal of methylene blue (MB).
View Article and Find Full Text PDFCopper-based metal organic framework (Cu-BTC) was prepared and used to remove dibutyl phthalate (DBP) in the presence of persulfate (PS). The surface characteristics, textural properties, and stability of activated Cu-BTC (denoted as Cu-BTC-A) were evaluated by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, N physical adsorption-desorption, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The effects of parameters such as initial pH, PS concentration, catalyst dosage, and free-radical quenchers have been investigated.
View Article and Find Full Text PDFThe widespread application of zinc oxide nanoparticles (nano-ZnO) has received increasing attention because of their potential risks to human health and the environment. This review summarizes the relationship between the toxic effects and physicochemical properties of nano-ZnO and the underlying toxicity mechanisms of nano-ZnO. This study presents the possible human health hazards posed by nano-ZnO exposure and the biotoxicity to bacteria, algae, higher plants, aquatic animals, terrestrial invertebrates and vertebrates and .
View Article and Find Full Text PDFRegul Toxicol Pharmacol
October 2018
Silver nanoparticles (Ag-NPs) are increasingly being applied in many consumer products due to their unique properties. Widespread use of Ag-NPs leads to an increasing human exposure to Ag-NPs in many different pathways. This review summarized the toxicity mechanisms of Ag-NPs based on various environmentally relevant test species, such as bacteria, cells, plants, aquatic animals and mammals, in both in vitro and in vivo experiments.
View Article and Find Full Text PDF