Publications by authors named "Shaocheng Qi"

Background: Artificial synaptic behaviors are necessary to investigate and implement since they are considered to be a new computing mechanism for the analysis of complex brain information. However, flexible and transparent artificial synapse devices based on thin-film transistors (TFTs) still need further research.

Purpose: To study the application of flexible and transparent thin-film transistors with nanometer thickness on artificial synapses.

View Article and Find Full Text PDF

Background: As a key component in artificial intelligence computing, a transistor design is updated here as a potential alternative candidate for artificial synaptic behavior implementation. However, further updates are needed to better control artificial synaptic behavior. Here, an updated channel-electrode transistor design is proposed as an artificial synapse device; this structure is different from previously published designs by other groups.

View Article and Find Full Text PDF

Background: Electronic devices which mimic the functionality of biological synapses are a large step to replicate the human brain for neuromorphic computing and for numerous medical research investigations. One of the representative synaptic behaviors is paired-pulse facilitation (PPF). It has been widely investigated because it is regarded to be related to biological memory.

View Article and Find Full Text PDF

Logic functions are the key backbone in electronic circuits for computing applications. Complementary metal-oxide-semiconductor (CMOS) logic gates, with both n-type and p-type channel transistors, have been to date the dominant building blocks of logic circuitry as they carry obvious advantages over other technologies. Important physical limits are however starting to arise, as the transistor-processing technology has begun to meet scaling-down difficulties.

View Article and Find Full Text PDF

Amorphous nano oxides (AO) are intriguing advanced materials for a wide variety of nanosystem medical applications including serving as biosensors devices with p-n junctions, nanomaterial-enabled wearable sensors, artificial synaptic devices for AI neurocomputers and medical mimicking research. However, p-type AO with reliable electrical properties are very difficult to obtain according to the literature. Based on the oxide thin film transistor, a phenomenon that could change an n-type material into a p-type semiconductor is proposed and explained here.

View Article and Find Full Text PDF