Publications by authors named "Shaobin Chai"

Microgravity is an ecological factor that affects the environment of the body. In this study, quantitative isobaric labeling (tandem mass tag) method was used to study the changes in human gastric mucosal cells under simulated microgravity for the first time. Comparative proteomic analysis identified 394 (202 upregulated and 192 downregulated) and 542 (286 upregulated and 256 downregulated) proteins differentially regulated by simulated microgravity after 3 and 7 days, respectively.

View Article and Find Full Text PDF

Background: Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions.

View Article and Find Full Text PDF

Astronauts suffer from inflammatory changes induced by microgravity during space flight. Microgravity can significantly affect the inflammatory response of various cell types and multiple systems of the human body, such as cardiovascular system, skeletal muscle system, and digestive system. The aim of this research was to identify the key genes and pathways of gastric mucosa affected by microgravity.

View Article and Find Full Text PDF

The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial.

View Article and Find Full Text PDF

The affiliation given for Yan Cui in this article is not correct. The following is the correction affiliation.

View Article and Find Full Text PDF

The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism.

View Article and Find Full Text PDF

Simulated microgravity can significantly affect various cell types and multiple systems of the human body, such as cardiovascular system, skeletal muscle system, and immune system, and is known to cause anemia and loss of electrolyte and fluids. Epidermal stem cells (EpSCs) were cultured in a rotary cell culture system (RCCS) bioreactor to simulate microgravity. The metabolites of EpSCs were identified by liquid chromatography-mass spectrometry (LC-MS).

View Article and Find Full Text PDF