Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain.
View Article and Find Full Text PDFThe biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs.
View Article and Find Full Text PDFMany medications commonly used to treat neuropathic pain are associated with significant, dose-limiting adverse effects, including sedation, dizziness, and fatigue. These adverse effects are due to the activity of these medications within the central nervous system. The objective of this work was to investigate the interactions between peripherally restricted cannabinoid receptor and mu-opioid receptor (MOR) agonists on ongoing and evoked neuropathic pain behaviors in mouse models.
View Article and Find Full Text PDFUnlabelled: Chronic pain after spine surgery (CPSS) is often characterized by intractable low back pain and/or radiating leg pain, and has been reported in 8-40% of patients that received lumbar spine surgery. We conducted a literature search of PubMed, MEDLINE/OVID with a focus on studies about the etiology and treatments of CPSS and low back pain. Our aim was to provide a narrative review that would help us better understand the pathogenesis and current treatment options for CPSS.
View Article and Find Full Text PDFPain after spinal cord injury (SCI) can be difficult to treat. Drugs that target the opioid receptor (OR) outside the central nervous system (CNS) have gained increasing interest in pain control owing to their low risk of central side effects. Asimadoline and ICI-204448 are believed to be peripherally restricted KOR agonists withlimited access to the CNS.
View Article and Find Full Text PDFIntroduction: Despite increasing utilization of spinal cord stimulation (SCS), its effects on chemoefficacy, cancer progression, and chemotherapy-induced peripheral neuropathy (CIPN) pain remain unclear. Up to 30% of adults who are cancer survivors may suffer from CIPN, and there are currently no effective preventative treatments.
Materials And Methods: Through a combination of bioluminescent imaging, behavioral, biochemical, and immunohistochemical approaches, we investigated the role of SCS and paclitaxel (PTX) on tumor growth and PTX-induced peripheral neuropathy (PIPN) pain development in T-cell-deficient male rats (Crl:NIH-Foxn1) with xenograft human non-small cell lung cancer.
Functionally distinct subtypes/clusters of dorsal root ganglion (DRG) neurons may play different roles in nerve regeneration and pain. However, details about their transcriptomic changes under neuropathic pain conditions remain unclear. Chronic constriction injury (CCI) of the sciatic nerve represents a well-established model of neuropathic pain, and we conducted single-cell RNA-sequencing (scRNA-seq) to characterize subtype-specific perturbations of transcriptomes in lumbar DRG neurons on day 7 post-CCI.
View Article and Find Full Text PDFThe purinergic system plays an important role in pain transmission. Recent studies have suggested that activation of P2-purinergic receptors (P2Rs) may be involved in neuron-satellite glial cell (SGC) interactions in the dorsal root ganglia (DRG), but the details remain unclear. In DRG, P2X7R is selectively expressed in SGCs, which closely surround neurons, and is highly sensitive to 3'-O-(4-Benzoyl) benzoyl-ATP (BzATP).
View Article and Find Full Text PDFMas-related G protein-coupled receptor X1 (MRGPRX1) is a human sensory neuron-specific receptor and potential target for the treatment of pain. Positive allosteric modulators (PAMs) of MRGPRX1 have the potential to preferentially activate the receptors at the central terminals of primary sensory neurons and minimize itch side effects caused by peripheral activation. Using a high-throughput screening (HTS) hit, a series of thieno[2,3-]pyrimidine-based molecules were synthesized and evaluated as human MRGPRX1 PAMs in HEK293 cells stably transfected with human MrgprX1 gene.
View Article and Find Full Text PDFBackground: Cannabinoid type-1 receptors (CBRs) are expressed in primary sensory neurones, but their role in pain modulation remains unclear.
Methods: We produced Pirt-CBR conditional knockout (cKO) mice to delete CBRs in primary sensory neurones selectively, and used behavioural, pharmacological, and electrophysiological approaches to examine the influence of peripheral CBR signalling on nociceptive and inflammatory pain.
Results: Conditional knockout of Pirt-CBR did not alter mechanical or heat nociceptive thresholds, complete Freund adjuvant-induced inflammation, or heat hyperalgesia in vivo.
Various pain therapies have been developed on the basis of the gate control theory of pain, which postulates that nonpainful sensory inputs mediated by large-diameter afferent fibers (Aβ-fibers) can attenuate noxious signals relayed to the brain. To date, this theory has focused only on neuronal mechanisms. Here, we identified an unprecedented function of astrocytes in the gating of nociceptive signals transmitted by neurokinin 1 receptor–positive (NK1R) projection neurons in the spinal cord.
View Article and Find Full Text PDFAgonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury.
View Article and Find Full Text PDFMechanisms of visceral pain sensitization and referred somatic hypersensitivity remain unclear. We conducted calcium imaging in Pirt-GCaMP6s mice to gauge responses of dorsal root ganglion (DRG) neurons to visceral and somatic stimulation in vivo. Intracolonic instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced colonic inflammation and increased the percentage of L6 DRG neurons that responded to colorectal distension above that of controls at day 7.
View Article and Find Full Text PDFBackground And Objective: The role of peripheral mu-opioid receptors (MOPs) in chronic pain conditions is not well understood. Here, we used a combination of mouse genetics, behavioral assays, and pharmacologic interventions to investigate the contribution of primary afferent MOPs to nociceptive, inflammatory, and neuropathic pain, as well as to opioid analgesia.
Methods: We generated conditional knockout mice in which MOPs were selectively deleted in primary sensory neurons.
Microglia can modulate spinal nociceptive transmission. Yet, their role in spinal cord stimulation (SCS)-induced pain inhibition is unclear. Here, we examined how SCS affects microglial activation in the lumbar cord of rats with chronic constriction injury (CCI) of the sciatic nerve.
View Article and Find Full Text PDFObjectives: The burden of pain after spinal cord injury (SCI), which may occur above, at, or below injury level, is high worldwide. Spinal cord stimulation (SCS) is an important neuromodulation pain therapy, but its efficacy in SCI pain remains unclear. In SCI rats, we tested whether conventional SCS (50 Hz, 80% motor threshold [MoT]) and 1200 Hz, low-intensity SCS (40% MoT) inhibit hind paw mechanical hypersensitivity, and whether conventional SCS attenuates evoked responses of wide-dynamic range (WDR) neurons in lumbar spinal cord.
View Article and Find Full Text PDFSeveral reports support the idea that µ- and δ-opioid receptors (ORs) may exist as heterodimers in brain regions involved in pain signaling. The unique pharmacology of these heteromers may present a novel analgesic target. However, the role of µ-δ heteromers in sensory neurons involved in pain and opioid analgesia remains unclear, particularly during neuropathic pain.
View Article and Find Full Text PDFOpioid use for chronic pain is limited by severe central adverse effects. We examined whether activating mu-opioid receptors (MORs) in the peripheral nervous system attenuates spinal cord injury (SCI) pain-like behavior in mice. We produced a contusive SCI at the T10 vertebral level and examined motor and sensory dysfunction for 6 weeks.
View Article and Find Full Text PDFInjury of peripheral nerves may quickly induce severe pain, but the mechanism remains obscure. We observed a rapid onset of spontaneous pain and evoked pain hypersensitivity after acute transection of the L5 spinal nerve (SNT) in awake rats. The outburst of pain was associated with a rapid development of spontaneous activities and hyperexcitability of nociceptive neurons in the adjacent uninjured L4 dorsal root ganglion (DRG), as revealed by both in vivo electrophysiological recording and high-throughput calcium imaging in vivo.
View Article and Find Full Text PDFBackground: Pain is a subjective experience derived from complex interactions among biological, environmental, and psychosocial pathways. Sex differences in pain sensitivity and chronic pain prevalence are well established. However, the molecular basis underlying these sex dimorphisms are poorly understood particularly with regard to the role of the peripheral nervous system.
View Article and Find Full Text PDFThe μ-opioid receptor (MOR) agonist morphine is commonly used for pain management, but it has severe adverse effects and produces analgesic tolerance. Thus, alternative ways of stimulating MOR activity are needed. We found that MrgC11, a sensory neuron-specific G protein-coupled receptor, may form heteromeric complexes with MOR.
View Article and Find Full Text PDFThe assertion that large-diameter nerve fibers have low thresholds and small-diameter fibers have high thresholds in response to electrical stimulation has been held in a nearly axiomatic regard in the field of neuromodulation and neuroprosthetics. In contrast to the short pulses used to evoke action potentials, long-duration ionic direct current has been shown to block neural activity. We propose that the main determinant of the neural sensitivity to direct current block is not the size of the axon but the types of voltage-gated sodium channels prevalent in its neural membrane.
View Article and Find Full Text PDFBackground: Ongoing neuropathic pain is difficult to treat. The authors examined whether dermorphin [D-Arg2, Lys4] (1-4) amide, a peripherally acting µ-opioid receptor agonist, attenuates ongoing pain-associated manifestations after nerve injury in rats and mice.
Methods: Using conditioned place preference assay, the authors tested whether animals show a preference to the environment associated with drug treatment.